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Abstract 
 
The transmission line insulation breakdown is 

typically assessed by performing insulator chain 
tests, and by conducting network modeling and 
simulation studies incorporating various stress 
conditions. This paper investigates how historical 
data coming from the lightning detection network and 
measurement stations capturing associated weather 
conditions can be utilized to provide a predicted 
assessment of risk of insulation breakdown for a 
given exposure and associated weather threats. The 
proposed analysis is enabled by the space and time 
correlation of the transient data recorded in the 
substations at the end of the lines, as well as by the 
assimilation of data obtained from the lightning 
detection network and weather stations. The 
proposed modeling and simulation tools are utilized 
to facilitate the time and space correlation analysis 
that leads to predication of the risk.   

1. Introduction  

Based on [1], 30% of blackouts in US in 2014 
were weather related. In addition to weather directly 
causing the outage, weather conditions are one of the 
main factors affecting deterioration of equipment,
which also may lead to failure. Lightning strikes 
generate overvoltages that travel along the 
transmission lines to substations. While they will not 
always cause the failure of equipment, their intensity 
and frequency of occurrence will affect the rate of 
insulation deterioration. Evaluating impact of 
lightning caused overvoltages on the insulators along 
the transmission lines is hence of utmost importance.

Georeferenced data from weather stations, 
lightning detection network, and utility 
measurements are readily available to conduct spatio-
temporal analysis correlating weather threats with 
their corresponding impacts [2]. With such spatio-

temporal framework, utility measurements coming 
from Intelligent Electronic Devices (IED), assets 
data, and weather and lightning data can be integrated 
to provide better decision making in outage and asset 
management in electric power systems [3].

Lightning studies and experiences with insulation 
coordination have been reported in [4-8]. For the 
purpose of estimating probability of a lightning 
strike, historical lightning data has been used in [4, 
5]. Correlation of lightning data with transient 
measurements has been studied in literature [2, 9]. In 
[9], real time monitoring of transmission line 
transients under lightning strikes was presented, 
which allows for spatio-temporal correlation of 
lightning data and transient measurements to evaluate 
the impact on insulation coordination. In [2], the 
lightning data is correlated with traveling wave fault 
locator data in order to provide better accuracy and 
robustness of the fault location algorithm. 

Correction factors for utilization of weather 
station data for insulation coordination have been 
described in [10]. In [11], statistical method for 
lightning-related risk analysis has been performed. 
An optimization procedure to determine locations of 
line arresters that would minimize the risk has been 
implemented. In [11], the weather conditions have 
been taken into account; however, the study has been 
performed based on a randomly generated data.   

This paper builds on the previous study [2] by 
adding the risk assessment to improve transmission 
system asset and outage management. It is organized 
as follows: Section 2 provides background for the 
topics of insulation coordination, lightning detection 
network, weather stations, and Geographical 
Information System (GIS). In Section 3, a
methodology for evaluating risk of insulation 
breakdown is outlined. Results of a case study are 
presented in Section 4, and Section 5 lists the 
conclusions. 
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2. Background  

2.1. Typical Insulation Coordination Risk 
Assessment Approach 

The insulators play an important role in power 
transmission system as the integrity of an overhead 
transmission line is directly governed by the 
electrical and mechanical performance of such 
equipment. According to the statistics, while the 
insulators account for only 5% to 8% of the direct 
capital cost of the transmission line, more than 70% 
of the line outages and up to 50% of line maintenance 
costs are being caused by the insulator-induced 
outages [12].  

Insulation coordination is the study used to select 
insulation strength to withstand the expected stress 
caused by lightning and switching overvoltages. 
There are two approaches to tackle this problem:
deterministic and probabilistic. In the former, 
minimum strength is set to be equal to maximum 
stress while in the later, the lightning flashover rate 
and lightning-related failures are calculated 
statistically and insulation strength is selected 
accordingly. 

Insulation strength can be described using the 

concept of Basic Lightning Impulse Insulation Level 
(BIL). Statistical BIL represents a voltage level for 
which insulation has a 90% probability of withstand 
and 10% probability of failure. Standard BIL is 
expressed for a specific waveshape of lightning 
impulse and standard atmospheric conditions. A
typical lightning impulse waveshape is presented in 
Fig. 1 [13]. In order to estimate expected stress on 
insulation, the failure risk is calculated statistically as
(Fig. 2): 

(1)

where f(V) is the probability of overvoltage 
occurrence and D(V) is the probability of a disruptive 
discharge. Probability of overvoltage occurrence can 
be described with density function as follows: 

�(�) = 1��√2� �	(
	
�)�
�� (2)

where VO is voltage for which probability density of 
overvoltage occurrences has a maximum, and σO is a 
standard deviation. Probability of a disruptive 
discharge can be expressed with a cumulative 
function: 

�(�) = 1��√2� � �	(
	
�)�
��

	� �� (3)

where VD is voltage for which insulation has 50% 
probability of a flashover, and σD is a standard 
deviation. More details about probabilistic models of 
insulation flashover can be found in [11, 14-16].

2.2. Weather Data and Correlation Approach 

GIS and GPS together provide a framework for 
conducting spatial-temporal correlation between the 
weather threats and their corresponding impacts. As 
stated in [17], the spatial and temporal correlation of 
data plays an essential role in the process of 
integrating big data analytics into the electric power 
industry applications. Spatial correlation of data is 
done by integrating different data sets as layers of 
GIS, while GPS is used for time synchronization 
between events, and for synchronizing the sampling. 

Two distinct categories of GIS data, spatial and 
attribute data can be identified [18]. Data which 
describes the absolute and relative context of 
geographic features is spatial data. For transmission 
towers, as an example, the exact spatial coordinates 
are usually accessible by the operator. In order to 
provide additional characteristics of spatial features, 
the attribute data is included. Attribute data includes 
characteristics that can be either quantitative or 

�
�

��
0

)()( dVVDVfR

Figure 1. Standard lightning impulse, [13]         
(Tr = 0.1–20 μs, Th < 300 μs, where Tr is the time-

to-crest value, Th is the time-to-half value)

Figure 2. Risk of component failure, [14]
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qualitative. For example a table with the physical 
characteristics of a transmission tower can be 
described with the attribute data. Any kind of data 
with a spatial component can be integrated into GIS 
as another layer of information, [19]. As new 
information is gathered, these layers can be 
automatically updated.  

In terms of spatial data representation, raster and 
vector data can be used. In case of vector data 
polygons, lines and points are used to form shapes on 
the map. Raster presents data as a grid where every 
cell is associated with one data class. Typically, 
different data sources will provide different data 
formats and types.  

GPS consists of a system of 24 satellites installed 
by the US Department of Defense [20]. It provides 
location and time information for GPS receivers 
located on the Earth. In order to use this service, 
devices such as traveling wave recorders and 
lightning sensors are equipped with GPS receivers 
that supply information about longitude, latitude, and 
altitude, as well as a precise time tag and PPS clock. 

Lightning data collected from the sensors or 
received from external source such as National 
Lightning Detection Network, [21], consist of the 
following information: latitude and longitude of the 
strike, a GPS time stamp, peak current, lightning 
strike polarity, and type of lightning strike (cloud-to-
cloud or cloud-to-ground). Location accuracy for the 
ground-based lightning location system is within 0.7-
1 km, [22]. GIS representation of lightning data is 
vector dataset including points of lightning strike 
locations. 

Weather stations measure a set of weather 
parameters, such as temperature, pressure, humidity, 
wind speed and direction, etc. Each weather station 
reports measured values at the location with certain 
time resolution. After values from multiple stations 
are collected, interpolation algorithms are used to 
estimate the values of parameters in an area of 
interest (i.e. transmission lines). The results are then 
presented as a vector or raster maps than can be 
overlaid with the network georeferenced map. 

Weather data is used to calculate BIL under 
nonstandard atmospheric conditions [23], BILA as: 

(4)

where BILA is the BIL under nonstandard conditions, 
BILS is the standard BIL, δ is the relative air density, 
and HC is the humidity correction factor. Relative air 
density can be calculated using: 

(5)

where TS and PS are standard temperature and 
pressure respectively; T and P are measured 
temperature and pressure respectively. Humidity 
correction factor is equal to 1 for rainy conditions and 
for dry conditions can be calculated using: 

(6)

3. Methodology 

3.1. Network Modeling and Simulation 

The network is modeled using the ATP version of 
EMTP [24]. J. Marti’s frequency dependent model 

[25] was used for modeling of transmission line 
segments between towers. For representing towers, 
multistory transmission tower model for lightning 
surge analysis proposed in [26] is used. Tower model 
parameters are calculated using (7a-7f): 

�� = 60 ��� �� − 1� (7.a)

� = ���ℎ� + �
ℎ
 + ��ℎ�2� � (7.b)

� =  ℎ!
�

!"�
(7.c)

#! = 	
$%&'√*,-.,�.,/ ℎ!, 4 = 1. .3 (7.d)

#8 = −2����9: (7.e);! = <>?
@
% , 4 = 1,4 (7.f)

where: 

Zt – tower impedance, 
H – tower height, 
Ri – resistances of sections, 
Li – inductances of sections, 
γ – attenuation coefficient, 
α – damping coefficient, 
Vt – propagation velocity, 
h1, h2, h3 – distances between stories, 
h4 – distance between lowest story and ground, 
ri – distances between tower center and tower edge at 
the level of a story i. 
Rf – tower footing resistance.  

SCA BILHBIL ��
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S

S��
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In the model, the lowest points of tower surge 
impedances are connected to the tower footing 
resistances.  

 Modeling of lightning impulse is done using 
current source based on CIGRE concave lightning 
model presented in Fig. 3 [27]. Lightning peak 
current is obtained from the lightning detection 
network. A time characteristic is synchronized with 
the time of a lightning strike. 

The simulation process is presented in Fig. 4.   
First the lightning strike is selected and data from 
lightning detection network are sent to the ATP 
model in order to generate the fault. Then the 
simulation is run. After simulation for each node 
(tower) of interest, the maximum value of voltage is 
recorded. In parallel, the nonstandard BIL for the 
component is calculated using weather data. In the 
end, measured maximum voltage is compared to the 
component’s nonstandard BIL and data is sent to the 

prediction model where it will be used as historical 
data for training.

3.2. Weather and Network Georeferenced 
Data 

A complete list of data used in this study is 
presented in Table I. All towers and substations were 
geographically referenced in order to spatially 
correlate their locations with those of lightning 
strikes and weather stations.

The 100 m buffer is created around transmission 
lines. Only lightning strikes inside the buffer were 
selected and each of them was simulated as one fault 
scenario inside ATP. Location of lightning strike in 
the ATP model is determined based on lightning 
location in relation to the transmission network map. 

Data obtained from three weather stations was 
used: Station NCHT2 - 8770777 - Manchester, TX, 
Station LYBT2 - 8770733 - Lynchburg Landing, TX, 
Station MGPT2 - 8770613 - Morgans Point, TX,
[28]. The locations of stations are presented in Fig. 5.
Time instances of interest are times of lightning 
strikes obtained from lightning detection network. In 
order to temporally correlate lightning data with data 
from weather stations, linear interpolation is used. 
For each tower and substation, weather parameters at 
the locations were calculated based on distance to the 
weather stations as:  

B = B��� + B
�
 + B���1�� + 1�
 + 1��
(8)

where P is an estimated parameter value at the 
component location, Pi is a parameter value measured 
at weather station I; and di is a distance from the 
weather station i to the component. 

Figure 3. CIGRE concave lightning model, [27]

Figure 4. The simulation process
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3.3.  Risk Framework 

The risk assessment framework used for this 
research is defined as follows: 

(9)

where R is the State of Risk for the system (or 
component), T is the Threat intensity (i.e. lightning 
peak current), Hazard P[T] is a probability of a 
lightning strike with intensity T, P[C|T] is the 
Vulnerability or probability of an insulation total 
failure if lightning strike with intensity T occurred, 
and the Worth of Loss, u(C), is an estimate of 
financial losses in case of insulation total failure. 
While typical risk assessment approach described in 
(1) does capture the hazard and vulnerability part, it 
does not take into account economical losses due to 
insulation breakdown and does not enable application 
of prediction algorithms to the parts of risk 
assessment model.  
The proposed risk measure can be defined as a 
stochastic process referenced in time and space as 
follows [29]:  #(C, D) = B[E(C, D)] ∙ B[G(C, D)|E(C, D)]∙ H(G(C, D)) (10)

where X represents the spatial parameter (longitude 
and latitude) and t represents the time parameter 
obtained using GPS. As an example, the impact of 
lightning is associated with certain time and location. 
The impact that lightning will have on a component 
depends on the component’s distance from the 

lightning strike. With the stochastic risk maps, the 

early warning system can be spatially and temporally 
mapped accordingly. 

Fig. 6 shows the relationship model for risk 
assessment. Lightning data are indicating the 
probability of a lightning strike that is impacting 
probability of a backflashover. Probability of a 
backflashover is also under impact of weather 
conditions (temperature, pressure, humidity and 
precipitation). If there was a backflashover, the 
probability of a component total failure (situation 
where insulation is significantly damaged and needs 
to be replaced) is examined. Not every flashover will 
cause insulation total failure so probability of a 
flashover and probability of insulation total failure 
are expressed separately and then combined within 
overall risk framework. Due to component failure, 
some losses are expected to be imposed. The chain of 
events will impact the final risk as discussed in [29]. 
The three components of risk analysis (hazard, 
vulnerability and worth of loss) can be identified in 
Fig. 6 and are explained in the following sections. 

3.3.1. Hazard 
Probability of a lightning strike is estimated based 

on historical lightning data in the radius around the 
affected components. Historical data for a period of 
10 years were used. For each node, the lightning 
frequency is calculated as: 

;�! = ;I;J (11)

where LA is the number of lightning strikes in the 
area with radius of 100 m around the node and LT is 
the number of lightning strikes in the total area of the 
network. Fig. 7 shows the final lightning frequency 
map for the transmission network under study from 
which the value of Hazard is selected for each 
component of transmission network.  

3.3.2. Vulnerability 
In order to estimate a new BIL as time progresses 
(BILnew), data described above are represented here in 

)(][][ CuTCPTPR ���

Figure 5. Location of three weather stations

Table I. List of data

Lightning Detection 
Network

Weather Insulation Studies Geography Traveling Wave Fault 
Locators

Date and time of lightning 
strike 

Temperature Surge impedances of towers Location of substations Date and time when 
event was recorded 

Location of a strike (latitude 
and longitude) 

Atmospheric 
pressure

Surge impedances of ground 
wire

Geographical 
representation of the line 

Distance to the fault 
from the line terminals 

Peak current and lightning 
strike polarity 

Relative 
humidity 

Footing resistance Location of towers Transient signals 
recorded at the line 
terminals Type of lightning strike 

(cloud to cloud or cloud to 
ground) 

Precipitation Components BIL (Basic 
Lightning Impulse Insulation 
Level)

Location of surge 
arresters
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form  of a power system network where each node 
represents a substation or a tower and links between 
nodes are calculated using impedance matrix as 
illustrated in Fig. 8. For each node in the graph, there 
are several input attribute values (x): temperature, 
atmospheric pressure, relative humidity, precipitation 
from the weather stations; Peak current and lightning 
strike polarity and the values of components BIL
(Basic Lightning Impulse Insulation Level) prior to 
lightning strike (BILold). The output of interest (y) is 
the BIL after occurrence of lightning strike (BILnew).  

BILnew in our experiments is predicted using 
Gaussian Conditional Random Fields (GCRF) based 
on structured regression [30, 31]. The model captures 
both the network structure of variables of interest (y)
and attribute values of the nodes (x). It is a model 
based on a general graph structure and can represent 
the structure as a function of time, space, or any other 
user-defined structure. It models the structured 
regression problem as estimation of a joint 
continuous distribution over all nodes: 

B(K|L) = 1� �LM N−   OPQK! − #P(L)R
 −S
P"�

T
!"�

−   U&�!V(&)W
&"�!,V X!V(&)(L)QK! − KVR
Y

(12)

where the dependence of target variables (y) on input 
measurements (x) based on k unstructured predictors 
R1, …, Rk is modeled by the “association potential" 

(the first double sum of the exponent in the previous 
equation). The structure between outputs based on 
multiple layers of node inter-dependence is modeled 
by the “interaction potential" (the second double sum 

of the exponent in the equation). With such feature 
functions, the distribution can be expressed in 
Gaussian form that makes inference and learning of 
the model more feasible. The inference problem is 
then formulated as the mean of the Gaussian 
distribution that maximizes P(y|x). Learning the 
parameters (α1, … , αk; β1 ,…, βl) is done by convex 
optimization of the log likelihood. 

Outputs in terms of predictions of BILnew variable 
are then used to calculate the probability of a 
flashover in case of a lightning strike P[F|T].   

The next step is calculating the probability of an 
insulation total failure in case there was a flashover 
with a cumulative function:  

P[C|F] = 1�_√2� � �	(
	
`)�
��

	� �� (13)

where VF is voltage for which insulation has 50% to 
exhibit total failure, and σF is a standard deviation.

Vulnerability is calculated as a combination of 

Figure 7. Lightning frequency map

Hazard

Vulnerability

Worth of Loss

Lightning Lightning Strike

Pressure
Air Density

Temperature

Humidity

Percipitation

Corrective Maintenance Costs

Loss of Revenue to Utility

Customer Interruption Costs

Back 
Flashover

Component 
Failure

Outage Location

Electricity Price

Labors/Tools

Risk 
Factor

Figure 6. Risk analysis model
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probability of a flashover in case of a lightning strike 
P[F|T] and a probability of an insulation total failure 
after a flashover has occurred, P[C|F] as:

(14)

As a result of Vulnerability analysis, the 
probability of insulation total failure is expressed in 
terms of lightning peak current.

3.3.3. Worth of Loss Assessment
In case where the failure of an insulator ends up in

a transmission line outage, the imposed outage cost 
can be quantified. The total imposed costs 
corresponding to the failure of insulator k and 
accordingly outage of transmission line i at time t, ΦP,!� , are quantified in (15) comprising of three 
monetary indices.

� �, CM, , LR, , CIC, ,
1

D
t t t t
k i k i k i k i

d
d LP

C C C
�
�

� � � �� (15)

The first monetary term in (15) is fixed and 
highlights the corrective maintenance activities to fix 
the damaged insulator. This cost index, which in 
some cases can be regarded as the replacement cost 
of the insulator, also includes the cost of required 
labor, regular tools, and maintenance materials. The 
variable costs (second term) include the lost revenue 
cost imposed to the utility (Gbc,P,!� ) as well as the 
interruption costs imposed to the affected customers 
(Gded,P,!� ). The cost function Gbc,P,!�  is associated with 
the cost imposed due to the utility’s inability to sell 

power and hence the lost revenue when the insulator 
(and the associated transmission line) is out of 
service during the maintenance or replacement 

interval. This monetary term can be calculated using 
(16) [29].  

� �LR, , , ,
1
LP

.EENS
D

t t t
k i d d k i

d
d

C �
�
�

� � (16)

where, fg�  is the electricity price ($/MWh.) at load 
point d and EENSg,P,!�  is the expected energy not 
supplied (MWh.) at load point d due to the failure of 
insulator k and outage of line i accordingly at time t. 
Here, the EENS index of reliability is calculated by 
solving the following optimization problem [30]: 

R
, , , G G
min ( ) ( )t R t

g g g g
V P Q g g

C P C r
� � �

�� � (17)

s.t. 
� � 0�Pg θ,V,P (18.a)

� � 0�Qg θ,V,Q (18.b)

� � 0�Fh θ,V (18.c)

� � 0�Th θ,V (18.d)
min max , Nn n n n� � �� � � � (18.e)
min max , Nn n nV V V n� � � � (18.f)
min max , Gt

g g gP P P g� � � � (18.g)
min max , Gt
g g gQ Q Q g� � � � (18.h)

max
R0 min( , ), Gt

g g gr r g� � � � � (18.i)
max

R, Gt t
g g gP r P g� � � � (18.j)

,
,

m
m

t t
g Z

g G Z
r R m

�

� �� (18.k)

min max LPd d dP P P d� � � � (18.l)

][]/[]/[ TFPFCPTCPityVulnerabil ���

Figure 8. Illustration of a network data X = (Lightning Current, Temperature, Pressure, Humidity, 
Precipitation, Measured Voltage, Old BIL); Y = (New BIL); Links: impedance matrix.
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suppliedIL LP, N
j j

t
d d dP P d j� 
 � � � � (18.m)

, , , , , ,
N H

EENS .IL .t t t t
d k i h d i k d i k

i h
P RT

� �

��� (18.n)

The optimization problem in (17) and (18)
dispatches the energy and reserve to optimize the 
social welfare by minimizing the total cost of energy 
and reserves while satisfying AC power flow 
equations, ancillary service requirements, and 
transmission and operating constraints. Constraints 
(18.a)-(18.b) represent the non-linear nodal active 
and reactive power balance equations. Network 
constraints (18.c)-(18.d) represent the branch flow 
limits for the “to” and “from” ends of each branch, 
respectively. Constraints (18.e)-(18.f) present the 
equality upper and lower limits on all bus voltage 
phase angles and magnitudes. Supply constraints are 
presented in (18.g)-(18.h) and (18.i)-(18.k) are 
capacity reserve constraints. Constraint (18.i) reflects 
the reserve for each generating unit that must be 
positive and limited above by a reserve offer quantity 
as well as the physical ramp rate (∆g) of the unit. 

Constraint (18.j) enforces that the total amount of 
energy plus reserve of the generating unit does not 
exceed its capacity. Constraint (18.k) is enforced to 
ensure that the right amount of capacity is procured 
according to the reserve requirements in each region. 
Constraint (18.l) restricts the demand at each load 
point between the lower and upper bounds. 
Constraint (18.m) calculates the interrupted load at 
each load point and constraint (18.n) evaluates the 
EENS corresponding to the outage condition.  

The last variable term of the cost function in (15) 
reflects the customer interruption costs due to the 
failure of insulator k and corresponding outage of 
transmission line i at time t which can be calculated 
through (19). As it can be seen, Gded,P,!�  is a function 
of the EENS index and the value of lost load 
(VOLLg) which is governed by various load types 

being affected at each load point. The value of lost 
load ($/MWh.) is commonly far higher than the 
electricity price as obtained through customer 
surveys [31].

� �CIC, , , ,
1

VOLL .
D

t t
k i d d k i

d
d LP

C EENS
�
�

� � (19)

 The cost function in (15), which is actually the 
failure consequence of an insulator, can be calculated 
for each insulator failure in the network making it 
possible to differentiate the impact of different 
outages on the system overall economic performance. 
The worth of loss map is presented in Fig. 9.   

4. Results 

4.1. Studied Network 

The network segment contains 170 locations of 
interest (10 substations and 160 towers). Based on the 
geographical representation and network 
connectivity, the prediction graph is constructed as 
described in Fig. 8. All towers were modeled using 
model described in section 3.1.

4.2 Test Scenarios 

Historical data is prepared for the period of 10 
years, starting from January 1st 2005, and ending with 
December 31st 2014. 1000 lightning strikes were 
assumed in the area of interest for the period of 10 
years and used for Hazard calculation in the proposed 
risk framework. Out of 1000 strikes 100 strikes 
caused a flashover and were considered as an input 
data for prediction of vulnerability. For each instance 
of lightning strike, the weather parameters were 
obtained as described in section 3.2. The separate 
weather parameters were calculated for each 

Figure 9. Worth of Loss Map
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component location. An example of weather data 
table is presented in Table II.

Before the first lightning strike, all components 
are assumed to have a BIL provided from the 
manufacturer. In each time step, new BIL is 
calculated based on the old BIL and collected 
weather data for each lightning strike.

4.3 Study Results 

For each network component, risk value was 
calculated, assigned, and presented on a map as 
shown in Fig. 10. The value of risk is presented as a 
percentage, where 100% is assigned to the 
component with highest risk for the future lightning-
caused failures. In part (a) of Fig. 10, the risk map on
January 1st 2009 is presented, while in part (b), the 
risk map after the last recorded event is presented. 
After several years of lightning impact, some of the 
zones that have experienced high rates of lightning 
activities have an increased value of risk. It is of 
utmost importance to observe the probability of 
future lightning strikes for such vulnerable zones.  

With the use of weather forecast, the prediction of 
future Risk values can be accomplished. In Fig. 10
(c), the prediction for the next time step is 
demonstrated. For the time step of interest, the 
lightning location is predicted to be close to the line 
11 (marked with red box in Fig. 10 (c). Thus, risk 
values assigned to the line 11 will have the highest 
change compared to that of the previous step. The 
highest risk change on line 11 happens for node 72
with changed from 22.8% to 43.5%. The Mean 
Squared Error (MSE) of prediction of GCRF 

algorithm on all 170 test nodes is 0.0637+0.0301 
volts when predicting the new value of BIL (BILnew).

5. Conclusion 

This paper introduces a new framework for 
predictive insulation breakdown risk assessment and 
maintenance plan. More specifically: 
� An automated risk-based early warning system 

(EWS) for prediction of insulation breakdown 
and associated economic impacts is developed 
and integrated with Geographical Information 
System (GIS). 

� Accumulated impacts of past disturbances to the 
lightning protection components are taken into 
account to assess unfolding component’s 

vulnerability after exposure to continued weather 
threats. Wide range of weather conditions 
surrounding lightning strikes is used. 

� Insulation breakdown risk is assessed by 
analyzing time/space correlation between 
historical lightning and weather data, and 
network measurements.  

� The algorithm is capable of predicting risk in 
case of future lightning strikes using Gaussian 
Conditional Random Fields (GCRF) structured 
regression model. With this model components 
geographical configuration is taken into account 
for a prediction. 

� The worth of loss assessment that effectively 
differentiates the impact of different outages on 
the overall system economic performance has 
been performed. 

(a)                                                                                         (b)

(c)                                           .

Figure 10. Total risk calculated on (a) January 1st 2009; (b) December 31st 2014; (c) January 5th 2015
(prediction after the next lightning strike)
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