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 

Abstract— A new predictive risk-based framework is proposed 

to increase power distribution network resiliency by improving 

operator understanding of the status of the grid. This paper 

expresses the risk assessment as the correlation between 

likelihood and impact. The likelihood is derived from the 

combination of Naive Bayes learning and Jenks natural breaks 

classifier. The analytics included in a GIS platform fuse together 

a massive amount of data from outage recordings and weather 

historical databases in just one semantic parameter known as 

failure probability. The financial impact is determined by a time 

series-based formulation that supports spatiotemporal data from 

fault management events and customer interruption cost. Results 

offer prediction of hourly risk levels and monthly accumulated 

risk for each feeder section of a distribution network allowing for 

timely tracking of the operating condition. 

 
Index Terms—Power distribution system, risk assessment, 

Naive Bayes learning, failure probability, time series, 

interruption cost, geographic information system (GIS).  

 

I. INTRODUCTION 

HE proposed predictive risk management framework leads 

to proactive risk management and effective ranking of risk 

reduction measures [1]. The weather-based risk assessment 

provides the spatiotemporal correlation between weather data 

and historical management data of the power distribution 

system. Historically, the risk assessment was mainly studied in 

power transmission system, [2]. The most recent literature on 

power distribution system has also focused on risk studies as a 

central theme [3]-[9]. 

 In [3], historic reliability data reflecting the variation of 

service continuity indices is utilized to develop probability 

distribution functions used to illustrate the potential financial 

risk associated with assigned reward/penalty structure 

integrated in a performance-based regulation plan for 

distribution utilities. The histograms of indices, such as system 

average interruption frequency index (SAIFI) and duration 
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index (SAIDI), overlap a predefined function that reproduces 

the reward/penalty regulation policy, predicting the future 

risks. Instead of evaluating the financial risk, [4] introduces a 

risk assessment approach that ensures the human safety in 

power distribution network by determining the intensity of 

fault current levels that are dangerous for people when 

stepping on downed conductor and touching poles in a faulted 

network. The risk analysis employs the Monte Carlo 

simulation using assumptions of probability distribution 

functions in the soil resistivity, human body resistance and 

heart current. Another study presented in [5] analyzes the risk 

from vaults in the underground power distribution system that 

can provoke human injuries, monetary compensation, energy 

unavailability and traffic disruption on streets. 

In [6], the correlation between day-ahead and real-time 

markets is integrated in a reliability and price risk assessment 

using an energy and pre-dispatch model. Going beyond the 

short-term market operation, work in [7] investigates the risk-

based security of concentrated solar power for mid- and long-

term planning horizons. The impact indices are aimed at 

minimizing steady-state voltage profile variation, assessing the 

line overload security, and verifying the static and dynamic 

voltage stability. Similarly, [8] assesses the impact of 

increasing the wind power injection into medium-voltage 

networks. Investment alternatives taking into account 

photovoltaic generation, electric vehicles and other new 

technologies at low-voltage network have been assessed by 

using the planning framework which determines the risks 

based on availability, losses and power quality [9]. 

Indeed, the risk assessment approach is a wide concept used 

in distribution system reliability, security and planning studies. 

The recent interest of academia and electricity industry is 

encouraging the resilient design of power networks [10] and 

resilient operating response [11]. Both approaches require the 

resilience evaluation that does not have a defined metric. The 

risk assessment is efficiently applied to serve this purpose. 

We have proposed several innovative solutions: a) 

integration of outage records, historical weather information 

and fault management events in a risk-based GIS driven 

proactive management tool; b) implementation of a risk model 

based on Naive Bayes learning, and classifying the calculated 

likelihood using Jenks natural breaks where the financial 

impacts are modeled using the time series-based 

spatiotemporal formulation, and c) operator visualization of 

hourly risk prediction using GIS interface. 
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TABLE I. OBSERVED EXTERNAL DEPENDENCES IN THE BAYES MODEL. 

xi Feature of interest  xi Feature of interest 

x1 Wind speed is low  x6 Weather is rainy 

x2 Wind speed is medium  x7 Weather is thunderstorm 

x3 Wind speed is high  x8 Incidence of lightning 
x4 Weather is good  x9 Vegetation is over height  

x5 Weather is misty  x10 Degradation by ageing 

 

 

This paper is organized as follows. Section II specifies the 

context that connects the proposed risk assessment framework 

to the improvement of the power grid resilience. In the Section 

III, the risk matrix mapping is described through the 

calculation of failure probability and interruption cost. The 

risk matrix is then achieved by using Jenks natural breaks 

algorithm for determining risk matrix row/column classes. In 

Section IV, explained concepts involving the proposed risk 

assessment framework are utilized in the evaluation of a real 

world distribution network. The conclusions are given in 

Section V before the references at the end. 

II. WHERE THE RISK ANALYTICS MEETS THE RESILIENCE 

One of the formal definitions of resilience refers to “the 

ability of an object to return to its original position after being 

stressed. In the power system, it generally refers to the ability 

of anticipating extraordinary and high-impact, low probability 

events, rapidly recovering and adapts as whole for preventing, 

or mitigating, similar events in the future” [12]. In addition 

“Because the power grid cannot be totally secure, grid 

resilience strategies must identify the greatest risk to the 

system and determine the cost and impact to the mitigation 

strategies for advancing the capacity of the power grid” [13]. 

It is also noted that “Replacing, upgrading or making all the 

power system components more robust to cope with the 

potentially increased impact of severe weather events is a very 

expensive and rather unrealistic solution” [14].  

In response to the mentioned resilience definition and 

proposed mitigation, we offer two developments. One entails 

new means of increasing operator situational awareness 

through risk-based analysis of the impacts of operator actions 

leading to prioritizing mitigation strategies for achieving the 

improved grid resilience. The other includes broad set of 

preventive actions that can be taken to improve the 

observability, controllability, and operational flexibility of a 

power system, particularly in response to severe weather 

events. Combining the two developments, we achieve the 

outcomes that lead to improved resilience. One is a user-

friendly visualization tool using color contours, animated 

arrows, dynamic sized pie charts, and three-dimensional 

representation of power system  leading to better assessment 

of the risk during emergencies. The other is a more focused 

decision-making tool that offers the predictive assessment of 

evolving conditions during severe weather events leading to 

preventive mitigation strategies to reduce the risks.  

The obtained risk level is a metric in response to 

unfavorable event affecting the distribution system. As 

defined in the risk analysis theory, the risk assessment is 

computed before and after a control action to preserve the 

distribution network operating in normal state. This metric 

also takes into account all power outages, which enables the 

risk assessment for the resiliency evaluation as is defined in 

[15] where main differences between resiliency and reliability 

are enumerated. 

III. RISK MATRIX MAPPING  

The measured risk is given by the correlation between the 

likelihood of event occurrence along time and consequent 

impacts of each event [16]. This correlation is typically 

obtained by a risk matrix where the risk is ranked in three 

levels: the high level (H) is considered unacceptable risk; the 

medium level (M) is dealt as either undesirable or as acceptable 

with review; and the low level (L) is treated as acceptable 

without review. The number of rows and columns of the risk 

matrix is defined by likelihood and impact categories using 

Naive Bayes and interruption cost models, respectively. 

A. Failure Probability Metric by Naive Bayes Model 

The proposed risk assessment framework employs the failure 

probability metric to determine the likelihood of something is 

malfunctioning in a distribution network. The processing of 

large volume of data from diverse databases, i.e. outage 

management system (OMS), lightning detection network, GIS, 

weather stations, and asset management system (AMS) 

database contributes to threats characterization, [17] and [18]. 

The use of the big data analytics is thus required where the 

machine learning technique demonstrates great efficiency in 

the knowledge extraction. The Naive Bayes is the supervised 

learning technique used to establish an association of several 

features of interest into just one quantitative parameter [19].  

The knowledge extraction is a function of data mining or 

knowledge discovery from data (KDD) that sequentially 

groups several functions for dealing with massive database 

difficulties, e.g. unnecessary information and inconsistent data 

[20]. In this way, the data cleaning, integration and selection 

functions are performed before the Naive Bayes model that 

processes the useful information. Equation (1) expresses the 

conditional probability of failure subjected to observe the 

external dependence ix . 
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Table I enumerates all external dependences that are given 

by different types of threats as features of interest in power 

distribution system. In addition, the Naive Bayes conditional 

independence assumption among features of interest also 

allows to define 
f

ii
fxp  1)|0( . The probabilities 

achieved by the maximum likelihood learning are average 

values from the data set. Since the power distribution system 

operating conditions depend on seasonality, the data set is 

grouped by years and months. The prediction of the probability 

value in the current year and month of analysis is achieved 

using a regression model resulting of the ordinary least square 

(OLS) estimator, as given by (2) and (3). The elements of mi,Β  

are prediction parameters obtained through the stored 
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procedures in the historical database server representing the 

final step involved in the knowledge extraction. 
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where 

      
 

 Probability of observing xi conditioned to a failure 

event f  in the m
th
 month of the past y

th
 year.  

         
 

 Estimate of the probability of observing xi 

conditioned to a failure event  f  in the current m
th

 

month of the current year. 
 

The prediction parameters comprise the matrix      
                from observed probabilities in the past years of 

the data set that are arranged in the matrix   where        

    
 
      . After getting the prediction parameters from 

database server, the distribution management system (DMS) 

supervisory application calculates the estimated probability using 

the regression model as given by (3) and, then, performs the 

Naive Bayes model. 

The calculation of failure probability to every feeder 

sections is performed using (4) and (5) where the vector of 

current external dependences X, or observed statuses of 

features of interest, comes from external servers for weather 

forecasting and lightning monitoring and from vulnerability 

models for vegetation and ageing degradation. 
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where 

       Conditional probability of failure subject to X; 

        Estimate of the likelihood of X given f; 

      Estimate of failure probability; 

The two states of the failure feature,             , lead 

the definition of          as the conditional probability of 

failure occurrence subject to observe external dependences 

                                that are 

enumerated in Table I. The estimated probability of observing 

the vector X can be compactly written as in (5) because of 

Naive Bayes conditional independence assumption. 

Some observed external dependences also come from AMS 

through the vulnerability models. Many power flow 

interruptions are caused when tree branches touch the 

distribution feeder conductors. The vegetation location 

detection is performed using remote sensing technology in 

association with GIS application that identifies the distribution 

feeder segments vulnerable to tree size. The prediction of tree 

heights uses a vegetation growth model as a function of time 

or age indicating whether computed tree height is over 

allowable height, [21] and [22]. 
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In (6), a possible vegetation growth model predicts the height 

of trees. The growth time comprises the time span between the 

current date      
  and last trimming date      

 . Additionally, the 

growth rate                 depends upon weather parameters 

such as monthly average values of temperature and 

precipitation. In the nature,    is the asymptotic tree height and 

        is the trimmed tree height that follows the security 

standards established by the power utility. Hence, the vegetation 

related current dependence
9

x  goes to one whenever the 

computed height is larger than a maximum height      

indicating the vegetation is over allowable height. 

Other vulnerability model takes into account electrical, 

mechanical and thermal stresses to determine the equipment 

degradation [23]. The ageing model makes use of the repair 

cycle for correlating equipment operating state and power 

supply interruption information. 
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Equation (7) determines the likelihood of failure   
  

comparing the expected lifetime   
  with operating time, i.e. 

deviation between the current      
  and installation date      

 . 

This comparison is shaped using a scale-parameter
i
 that 

represents the dispersion in time-to-failure for different types 

of electrical devices such as circuit-breaker, conductor and 

distribution transformer. Thus, electrical equipment may have 

a high level of degradation whenever it reaches at least 63% of 

possibility to fail. 

B. Time Series-based Interruption Cost 

In the proposed risk assessment framework the impact 

quantification is achieved by calculating the energy supply 

interruption cost [24]. The support of time varying energy 

consumption profiles is guaranteed by the time series-based 

interruption cost formulation as well as the identification of 

event locations involved in the outage management is 

supported by georeferenced network data. Considerable data 

on individual customers and power distribution system are 

required in the estimation of costs associated with the 

interruption. 

The sum of costs perceived by these various agents of the 

energy market yields the total cost of the power interruption 

      . The utility company has costs that are related to 

income, electric energy sales, capital investments in their 

electrical devices      and the operation and maintenance 

tasks     . The regulatory authority maximizes the energy 

benefits to the society by balancing the energy consumption 

prices according to established rate-case rules     . The 

energy purchase price and financial loss due to power supply 

interruption also affects the customers' activities     [25]. 
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In (8), the total cost caused by the interruption of one feeder 

section (part of the distribution feeder limited by two or more 

sectionalizing switches used in the network reconfiguration) is 



 4 

given in two parts. The first part is the operation and 

maintenance cost that depends on the route traveled by the 

field crew    where the distribution network topology, 

georeferenced position of sectionalizing switches, initial 

position of field crews and GIS routing application are 

employed as input information for solving the crew dispatch 

problem [26]. The second part is the sum of cost related to 

different market agents that are grouped in a set   
             comprising, respectively, the billing loss of 

utility company, the penalty cost from regulatory authority 

rules, and the economic losses of different types of customers. 

These different costs    depend on the interruption time   , 

i.e. the time span including outage report time (wait time from 

the fault occurrence until the dispatch of field crews), 

maneuver time (interval involving the field crew travel, feeder 

inspection and manual switching to isolate the faulted feeder 

section and to restore the adjacent feeder sections) and repair 

time (required time to repair the damage equipment and to 

restore the energy supply service). Since fault management 

procedures change the state of energy customers, the 

interruption time is discretized by a pre-defined time step    

yielding the set of time series  . 
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In (9),      is a binary variable that reproduces state changes 

of the j
th

 customer during the interruption time where the logic 

value 1 indicates the interruption in the energy supply. The   

set contains all customers on the feeder and the effect of 

different market agents over the individual customer cost     
  

as in the following the formulation. 
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Additionally to operation and maintenance cost, the utility 

company also perceives the billing loss, i.e. the cost of energy 

that could be sold to customers during the interruption, given 

by the cost of energy not supplied     
    as in (10), where   

  is 

electricity rate and    is the installed power of the j
th

 customer. 

The most typical customer types are grouped in   
                                    while their 

consumption profiles are in                    . In this 

way,       
    is a tridimensional data array with load percentage 

demand hour-by-hour [24] and, consequently,        is a two-

dimensional binary array for indicating the type and 

consumption profile of the j
th

 customer. 
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According to the rules established by regulatory authorities 

for compensating customers over long outages [27], utility 

companies could be penalized and customer compensated 

whenever the outage interval exceeds the established limit. In 

(11), the penalty cost     
    is determined using the   function 

that has zero value while the product of     is less than the 

maximum outage duration      . Otherwise, the billing loss 

of j
th

 customer is multiplied by a factor of penalty. 
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The most significant part of the total cost is the customer 

interruption cost that associates the economic losses of 

different customers during the power supply failures [28]. 

Wages paid to idle workers, loss of sales, overtime costs, 

damage to equipment, spoilage of perishables, cost of running 

back-up generators and cost of any special business 

procedures contribute to the determination of the customer 

interruption cost [29]. In particular, the endangered well-

being, spoiled food and damaged appliances may affect 

residential customers. The impact of power interruption is 

popular and directly formulated using the customer damage 

function by expressing the customer interruption cost as a 

function of outage duration [30]. Equation (12) determines the 

customer interruption cost     
   for j

th
 customer in the i

th
 time 

step. The values of     
    time series are interpolations from the 

table containing values of customer damage functions that are 

typically defined for each economic activity or customer type. 

C. Method for Defining the Risk Matrix  

The calculation of failure probability and interruption cost 

quantifies the likelihood and impact, respectively, and is 

performed hour-by-hour for timely risk assessment using the 

proposed risk matrix. Hourly values of likelihood and impact 

are classified into categories and mapped to rows and columns 

of the risk matrix whose elements determine risk levels. Since 

levels and categories represent ranges of continuous values, a 

clustering methodology is needed to classify the estimated 

likelihood, impact and risk, as in Fig. 1.  

The Jenks natural breaks algorithm is a common method in 

GIS applications able to divide a dataset into a predefined 

number of homogeneous classes. This method was originally 

introduced as "optimal data classification" because it 

minimizes the variance within classes by maximizing the 

variance between classes [31]. One-dimensional values that 

are not uniformly distributed, as estimated likelihood, impact 

and risk, are appropriate for Natural breaks classification [32]. 

The goodness of variance fit (GVF) is a quality index used 

by the Jenks algorithm as stopping criteria. The perfect fit, or 

“optimum data classification”, is achieved when        . 

The Algorithm 1 describes methodically all steps in the Jenks 

optimization to obtain the class boundaries with the maximal 

similarity from an input dataset U. At the beginning, the class 

boundaries are defined by intervals with the same size. Then, 

the algorithm adjusts the boundaries systematically until the 

 

Fig. 1. Jenks natural breaks optimization on risk assessment framework. 
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Algorithm 1 Jenks Natural Breaks algorithm.  

1: Select the input dataset U to be classified and specify the number of 

classes, NC. 

2: Define the classes’ boundaries: [INFj, SUPj] to j = 1, 2, …NC, where 
every interval has the same size. 

3: Calculate the sum of squared deviation of the dataset SDU by (13): 

   UiU uuuSD i ,
2  (13) 

4: While the GVF is lower than maximum value do 
5: Calculate the sum of squared deviation for each class SDj by (14): 

   jjji,jji SUP,INFuuuSD  ,
2

,j
 (14) 

6: Increase one standard deviation            into the interval [INFj, 

SUPj] from classes with lowest SDj by decreasing one    into the 

interval from classes with largest SDj. 
7: Calculate the GVF by (15): 

USDSDGVF

NC

j

j




1

1  (15) 

8: End while 

9: Store the classes’ boundaries of input dataset, U. 

 

minimization of the sum of the squared deviation from the 

classes, i. e. until the maximization of GVF is achieved. 

The Jenks natural breaks optimization performs the 

determination of boundaries for each class, i.e. inferior and 

superior limits for each likelihood and impact category as well 

as for each risk level. In Fig. 1, the input dataset into Jenks 

optimizer comes from calculations of failure probability UL 

and interruption cost UI. The product of probabilities and costs 

becomes one-dimensional risk dataset UR permitting to use 

again the Jenks optimizer on risk level classification. The 

illustrated process to determine class boundaries can be a 

periodic procedure using data collection from last year. 

As demonstrated in Fig. 1, the risk is also quantified by 

multiplying        times        and classified in risk levels 

using the Jenks natural breaks algorithm. If quantified values 

of likelihood and impact from previous year are disposed into 

axes of a dispersion chart then each data point  

     
               is classified according to its risk level. 

Since the m likelihood and n impact categories have inferior 

and superior bounds and cover axes of dispersion chart, there 

are a number of mxn discrete regions that determine the value 

of each element      into risk matrix. In other words, rows and 

columns of the risk matrix are mapped into axes of the 

dispersion chart that has regions with data points of different 

risk classification. For example, data points in a particular 

region can have medium or high risk level classification. 
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The element      of the risk matrix is hence determined 

using the density formulation as is given in (16) where the 

value of i is equal to the risk level ( ,   or  ) with the 

maximum calculated density    at the        region that is 

limited by m
th

 likelihood category and n
th

 impact category. In 

this way,        if the number of data points classified as 

low risk level,             , is preponderant in the region 

      . In the region with identical values of calculated 

densities, the value of the element representing this region into 

mapped risk matrix is equal to the highest risk level because 

higher risk levels are less frequent than lower risk levels. 

The determination of risk matrix elements completes the 

inference mechanism of the proposed online risk assessment for 

each feeder section of power distribution network. Although 

formulated models are very important in the quantification of 

likelihood and impact, the central issue in this work relates to 

the process of how to classify these quantities, how to build the 

risk matrix and how to develop a DMS tool able to efficiently 

display the risk levels using a GIS application. Therefore, the 

following section comprises both the construction of risk matrix 

by determining classes’ boundaries and the verification of the 

developed GIS tool for risk assessment. 

IV. GIS VISUALIZATION IN THE DMS  

The proposed methodology is evaluated under real world 

distribution feeder with data available in [33]. Ten 

sectionalizing switches limits nine feeder sections in the 

evaluated feeder. These feeder sections have multiple laterals 

and electrical loads and are also limited by sectionalizing 

switches that must operate during the reconfiguration 

procedure. In the calculation of failure probability, the 

learning information comes from external sources: two 

weather stations and one lightning detection network, where 

the historical databases comprise seven years, from 2009 to 

2015. Parameters of the vegetation growth model are adjusted 

by considering the tree pruning schedule equals to one year 

whereas the equipment degradation vulnerability model of 

different devices may have their parameters obtained using the 

method discussed in [23]. In terms of interruption cost, the 

input dataset can be found in [24]. Both calculations obtain 

quantified values of likelihood and impact for each feeder 

section. A general purpose programming language (C++) is 

used in the implementation of the proposed models that are 

integrated with a distribution network simulation platform for 

supporting the use georeferenced data [34].  

A. Building the Risk Matrix 

The first process comprises the determination of quantified 

likelihood ranges by defining inferior and superior boundaries 

of rows categories listed in Table II through Jenks 

optimization. In the classification process, the histogram was 

built using around five thousand values of failure probability. 

Fig. 2 shows the histogram of the distribution of failure 

probabilities where the frequency axis is rated using 

logarithmic scale of base ten. A histogram in linear scale is 

shown at the far-right corner, which helps to deduce the 

absence of a probability density function able to characterize 

the likelihood. There are failure probability values with zero 

frequency because the set of external dependences, X, has a 

finite number of features of interest and the occurrence 

probability for each feature of interest is calculated monthly. 

Despite this characteristic, the Jenks optimizer found the six 

likelihood categories and their range limits by a GVF index 

being equal to 0.98704. For example, the likelihood category 

III comprises failure probability values between 0.31 and 0.54. 
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TABLE III. DETERMINED ELEMENTS OF THE RISK MATRIX. 

 IMPACT 

  A B C D E F 

L
IK

E
L

IH
O

O
D

 I L L L L L L 

II L L L L L M 

III L L M M M H 

IV L M M M H H 

V M M M H H H 

VI M M M H H H 

 

TABLE II. ROWS AND COLUMNS CATEGORIES OF THE RISK MATRIX. 

Rows  Columns 

 Categories Description  Categories Description 

L
IK

E
L

IH
O

O
D

 I Extremely Unlikely 

IM
P

A
C

T
 

A Insignificant 

II Highly Unlikely B Minor 

III Doubtful C Significant 

IV Very Unlikely D Serious 

V Unlikely E Major 

VI Likely F Catastrophic 

 

The second process involves the determination of quantified 

impact categories in Table II by determining their boundaries. 

Fig. 3 displays the histogram of the distribution of interruption 

cost values where frequency was obtained by taking into 

account a series of intervals each equal to $500. The 

distribution characteristic is shown by the histogram in linear 

scale helping to deduce that interruption cost values can be 

featured by a Weibull probability distribution. Although the 

economic activity and consumption profile are important 

factors in the cost calculation, the interruption duration, which 

also figures the Weibull probability density function, is the 

factor with the greatest influence over the interruption cost. 

Six impact categories were achieved by Jenks algorithm 

with GVF index equals to 0.96149. The first three impact 

categories have shorter ranges due to large frequencies in this 

region. Consequently, the impact category B has the shortest 

range equals to $3,500, whereas the category F comprise the 

longest range, from $20,450 to $31,670. 

The third process deals with the determination of risk levels 

by defining their boundaries. Fig. 4 demonstrates the histogram 

of the distribution of quantified risk values using a series of 

intervals equal to $500, as well. The linear scale-based 

histogram at far-end right corner reveals that risk distribution 

has the behavior of an exponential probability distribution, so 

the most adequate classification methodology should be 

performed by head/tail breaks classifier [35]. In this case, the 

Jenks optimizer can be used again because the quantified risk is 

grouped in few numbers of classes, i.e. in three risk levels, and 

the density method should still determine the preponderant 

characteristic for each region at dispersion chart what admits 

data points that are classified with less degree of accuracy. 

Three risk levels were achieved using the Jenks algorithm 

with GVF index equals to 0.83967. Although the quality index 

had been worse than GVF indices in quantified likelihood and 

impact classification, the achieved risk level ranges fit with 

heavy-tailed distribution. For instance, the head risk level, L, 

has range equals to $3,200 in contrast to the tail risk level, H, 

with range of $21,900. 

After the determination of class boundaries, the next 

process consists of the construction of risk matrix using the 

density method. Table III presents elements of the risk matrix 

where rows are likelihood categories and columns are impact 

categories. Now, the hourly risk assessment can be executed 

using previously determined categories and risk matrix. 

B. Study Case under Real Distribution Network 

According to the Table III, each risk level is identified by a 

color. The GIS application thus assigns for the graphical 

representation of the feeder section the color corresponding to 

the risk level. Furthermore, the addition of daily hours to set of 

spatial coordinates includes one more dimension into feeder 

section representation in GIS application. This extra 

dimension has the risk level information represented hour-by-

hour, which is well suited to perform online risk mitigation. 

Fig. 5 shows a screen shot with the tridimensional graphical 

representation of the tested distribution network where 

different colors are hourly risk levels. The base of the graphic 

corresponds to daily early hours, from 00:00 to 06:00 of 

 

Fig. 4. Distribution of quantified risk values in risk level ranges. 

 

Fig. 3. Distribution of interruption cost values in impact category ranges. 

 

Fig. 2. Distribution of failure probability values in likelihood category ranges. 
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January, 14th of 2016, with low risk level in all feeder 

sections. After that, both weather condition and energy 

consumption profile are modified causing changes in risk level 

of feeder sections. For example, feeder section #1 presents 

very low risk level but, along the day, its risk level was 

classified as medium because of weather changes. At 20:00, 

the observed weather pattern was thunderstorm with medium 

wind speed given by                    causing the 

feeder section #2 to change its risk level from medium to high 

risk. Although weather changes influence the risk level in 

feeder section #3, the main color is intense red representing 

the high risk level that is a consequence of economic activities 

from customers with large installed power. 

The features of interest represented by x8, x9 and x10 are 

associated with the lightning, vegetation and ageing respectively, 

and have focused behavior associated with each power grid 

component whereas the other weather dependences cover a larger 

area. As the region of the city under study has many feeder 

sections with several power grid components, it becomes 

infeasible to represent all the assigned values to these features of 

interest when used in the determination of risk levels.  

The other way of taking advantage of the developed GIS 

tools is in risk management by assigning the value attribution 

to risk levels. For instance, low level is equals to 0, medium is 

equals to 1 and high is 2. Thus, the different grades of the 

accumulated, or continuous sum, risk along the distribution 

network are visualized using color temperature scale in 

overlapped layers with different accumulated risk values. Fig 

6 shows the accumulated risk values during January where the 

smaller accumulated risk values are the first layers in cold 

color while the larger values are the last layers in hot color. 

The feeder section #1 has one lower layer in cold color 

indicating the accumulated risk is small. On the other hand, 

the feeder section #2 had upper layers with hot color tones 

indicating its large accumulated risk, which is the consequence 

of customers' types connected in this section. 

The high risk level does not just depend on the failure 

probability but also on the impact intensity, as is established in 

Table III. But the risk level must be either medium (M) or 

high (H) whenever the failure probability quantization has 

large value and it is classified as Likely (VI). In the 

comparison process using records of risk levels, the existence 

of low (L) risk level at the past occurrence of a failure event 

 
Fig. 6. Partial screen of the developed GIS application with tridimensional representation of accumulate risk levels during a month. 

 

 
Fig. 5. Partial screen of the developed GIS application with tridimensional representation of risk levels hour-by-hour. 
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indicates hence a mismatching of the proposed methodology. 

Fig. 7 shows that the proposed methodology presents a 

mismatching ratio around 20% whenever the cause of failure 

event is adverse weather, component failure or lightning. 

When the cause is vegetation contact, the ratio improves to 

10%. Subsequently, the hours after one mismatching the 

correct risk level are calculated and indicated by the proposed 

methodology. The bar chart of delayed hours demonstrates 

that the delay time does not exceed five hours and in the most 

part of mismatching occurrences the correct risk level is 

indicated with one hour of delay. These results reveal the 

effectiveness of the proposed methodology for evaluating the 

jeopardized operating condition of power distribution grids. 

V. CONCLUSION 

We have shown that the weather-based risk assessment can 

provide risk quantification through the correlation involving 

available weather data and historical management data of the 

power distribution system.  

Once the realization of this risk assessment step is 

implemented, one can then integrate it with the advanced 

distribution management system to offer risk mitigation. This 

tool facilitates the operators’ decisions since it employs 

spatiotemporal GIS based visualization for the resiliency 

improvement actions. 
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