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Predictive Risk Management for Dynamic Tree
Trimming Scheduling for Distribution Networks
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Abstract—This paper introduces a predictive method for
distribution feeder vegetation management based on a risk
framework. The state of risk is calculated for each feeder section
using a variety of factors extracted from network parameters
and historical outage data, historical weather data and weather
forecasts, and a variety of vegetation indices. The framework
implements the spatiotemporal correlation of all the collected
data. The prediction model used is the Gaussian conditional ran-
dom field, which takes into account spatial interdependencies
between different feeder sections. This enables better prediction
accuracy, and also offers the capability to deal with missing and
bad data. Based on the calculated risk, the dynamic optimal
tree trimming schedule, which minimizes the overall risk for
the system under a given predetermined budget, is developed.
Results obtained on a real utility network show that optimal tree
trimming based on the developed risk framework for vegetation
management could significantly decrease the overall risk of the
feeder outages without increasing the budget.

Index Terms—Asset management, big data, data mining, geo-
graphic information system, meteorology, prediction methods,
power distribution, risk analysis, smart grid, vegetation mapping.

I. INTRODUCTION

THE MOST common cause of outages in electric power
systems is a combination of vegetation activity and

severe weather impacts [1]. Thus, vegetation management is
of the upmost importance for assuring high levels of network
resilience. In addition, good vegetation management practices
ensure safety for field workers and the public. Utilities spend
millions of dollars on vegetation management every year [2],
which makes it one of the highest costs in distribution asset
management [3]. Every year several billions of dollars are
spent on vegetation management in the U.S.A. [5]. Efficient
automated vegetation management could significantly decrease
the costs associated with tree trimming [4].

Efforts to automate vegetation management have employed
multiple techniques in the last few decades. Work in [6] used
a Markov model to find the optimal inspection frequency
while finding a compromise between the reliability of the
system and the cost of distribution feeder inspection. In [7]
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the optimal tree trimming schedule was developed based on
a hybrid genetic algorithm consisting of simulated annealing,
genetic algorithms, and tabu search. Vegetation-related fail-
ure rates were predicted using four different algorithms in [3]:
linear regression, exponential regression, linear multivariable
regression, and an artificial neural network. The developed pre-
dictors used historical outage data and some of the weather
parameters, but vegetation indices were not considered. In
the listed literature, when the weather impact was consid-
ered, only a few variables of interest were included and their
impact was averaged over time. Two models, negative bino-
mial generalized linear model and a Poisson generalized linear
mixed model, were used in [8] to evaluate the impact of tree
trimming on the rate of vegetation caused outages in distribu-
tion. The data used in this study were limited to the utility
collected data, without insight into weather and vegetation
indices. In [9] and [10] satellite imagery was used to identify
dangerous trees around the transmission lines. While the use of
high resolution imagery did show the potential in transmission
vegetation management, its use in distribution was not dis-
cussed. Work in [4] and [11] developed a reliability-centered
vegetation management while looking closely into the elec-
trical characteristics of vegetation-related outages. The work
in [12] demonstrated the potential of spatial correlation of big
data for improvements in distribution vegetation management
but did not provide related data analytics.

This work provides several contributions:
1) To improve risk predictions, a variety of data sources are

used: the historical weather and weather forecast data,
various vegetation indices and high resolution imagery
data, and historical utility records about outages and
maintenance. Their integration and correlation is novel.

2) A spatiotemporal model for correlating a variety of
data in time and space is developed, which provides real-
time generation of predictive risk maps for assessment
of the vegetation around the distribution feeders.

3) Analytical approach is introduced for vegetation risk
management based on a Gaussian Conditional Random
Field (GCRF), which takes into account both the spatial
and the temporal configuration of the network and past
events to improve the prediction performances.

4) An optimized, cost-effective dynamic tree trimming
scheduler is developed to minimize the overall risk of
the network while maintaining the economic invest-
ment in periodic tree trimming. The unique benefits
of this approach are demonstrated on an actual utility
distribution network.
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Fig. 1. Environmental impact on vegetation management [15].

The background about vegetation management is pro-
vided in Section II. Spatiotemporal correlation of big data is
described in Section III. Section IV defines the vegetation
risk management, while the optimal tree-trimming sched-
ule is introduced in Section V. The results are presented in
Section VI, and conclusions in Section VII.

II. BACKGROUND

This section describes the mechanisms of weather and veg-
etation impacts on vegetation caused outages, and current
vegetation management practices implemented by the utili-
ties. As presented in Fig. 1, there are two major classes of
vegetation-related feeder outages in distribution systems. They
are differentiated by the tree coming in contact with feeders
due to 1) overgrowing the feeder height, and 2) being forced
into a contact with the feeder due to wind or some other similar
weather impacts.

A. Vegetation Impact

Starting from the most recent tree trimming per-
formed, the vegetation-caused failure probability is constantly
increasing [6]. For predicting the potential of vegetation to
cause faults subsequent to the last tree trimming, the most
important factor is the vegetation canopy growth rate. There
are two types of models for estimating the canopy growth
dynamics [3]: 1) process-based models that aim at defining
the processes that cause tree growth [13], and 2) empiri-
cal data-based models [14]. The maximum tree crown spread
represents the maximum width of the tree crown (branches,
leaves) along any axis. It is affected by the tree’s age,
last tree trimming date, application of herbicides or growth
regulators, and weather impacts (primarily temperature and
precipitation) [3].

The measured electrical behavior and physical processes
and effects surrounding the vegetation-related faults were
described in detail in [4] and [11]. It was concluded from
the experimental results that while the initial current during
the tree contact can be quite low (∼1A), after a complete
carbonization path in the tree branch is formed, the current
magnitude quickly increases to a high level.

B. Weather Impact

The weather parameters that can affect vegetation-related
outages are wind speed, direction, and gusts, precipitation,
temperature, humidity, pressure, and lightning, as listed in
Fig. 1. The impact of high speed wind and heavy precipi-
tation may cause trees to come into contact with distribution
feeders due to the following reasons: a) branches break off
and fly into lines, and b) complete trees topple when moved
by wind [12]. The temperature, precipitation level, and humid-
ity have impacts on the tree growth rate. In combination with
the type of soil, they are the main factors dictating a tree’s
growth rate.

C. Vegetation Maintenance

Vegetation maintenance staff are in charge of maintain-
ing the feeder clearance to the surrounding vegetation. This
includes trimming and the removal of trees around the dis-
tribution poles and lines. Distribution lines are often placed
near the surrounding vegetation due to relaxed right-of-way
requirements. Due to the high expenses of trimming large areas
populated by many distribution feeders, it is not economical
to have all trees securely trimmed at all times, so a more
economical trimming schedule is used.

In most cases, the process of tree trimming is applied by
utilities based on a predetermined periodic schedule. Each
feeder section is given a tree trimming frequency, e.g., three or
five years, based on the operating voltage and required clear-
ance, leading to the standard fixed interval schedule [7]. The
only other occasion when the schedule would be changed is
as a reactive measure to a vegetation-caused outage, shown
in Fig. 1. There are two types of reactive measures that can
be distinguished: 1) only the faulted area is maintained, and
2) the entire tree trimming zone is trimmed. In addition to tree
trimming, some utilities inject growth-retarding chemicals into
trees (tree-growth regulators) or apply herbicides [7].

The current maintenance practice relies on a visual inspec-
tion by helicopters, airplanes, ground vehicles, or people
walking up to the lines [16]. Because of the high cost of this
practice, it is of economic benefit to develop visual inspection
methods that can provide automatic identification of dangerous
zones, as it will be described in Section III-B.

III. SPATIOTEMPORAL CORRELATION OF DATA

This section describes the data processing that starts from
the raw data and prepares the processed inputs for the
predictive risk analysis and optimal tree trimming scheduler
described in the next two sections respectively. All of the
data has to be spatiotemporally correlated. All of the spa-
tial processing of the data is done using ESRI ArcGIS [17].
Temporal data processing is done using Python [18] datetime
library [19].

A. Data Preprocessing

Raw data are processed to remove unused components. All
the data that has a geographical reference is placed into a geo-
database during the preprocessing. Table I lists all the extracted

Authorized licensed use limited to: Texas A M University. Downloaded on December 24,2023 at 12:29:00 UTC from IEEE Xplore.  Restrictions apply. 



4778 IEEE TRANSACTIONS ON SMART GRID, VOL. 10, NO. 5, SEPTEMBER 2019

(a) (b) (c)

Fig. 2. Example of vegetation extraction: a) 40 classes, b) imagery for reference, and c) reclassified (vegetation highlighted).

parameters needed for the prediction model, and the associated
temporal and spatial references.

Data come with different spatial and temporal resolutions.
Historical weather data from ASOS land stations [20] has the
highest temporal resolution (up to 1 min); however, the spatial
resolution of data is low, including only a few weather stations
in the network service area. Vegetation data has a low temporal
resolution (collected once per year or two years) but has a high
spatial resolution (up to 50 cm). The rate of data collection
varies not only between different data sets, but also it can
vary within a single data set. For example, weather data is
collected by land-based weather stations with a maximum rate
of one data point per minute, but the rate can go down to one
data point per hour. In some rare cases, the rate may go as
low as one point within several hours. After preprocessing, the
dataset is still not ready for the input into the predictive risk
model. All the parameters need to be spatially and temporally
correlated, as is described in Sections III-C and III-D.

B. Vegetation Data Processing

Image data is used to extract the location of vegeta-
tion surrounding the network. The imagery is collected from
the Texas Natural Resources Information System (TNRIS)
database [21]. The following orthoimagery datasets are used
in the study:

• National Agriculture Imagery Program 1m NC\CIR for
years 2010, 2012, 2014, and 2016;

• Texas Orthoimagery Program 50cm NC\CIR for 2015.
The datasets are loaded into the geodatabase as raster files.

First, to reduce the amount of data for processing, imagery
raster files are clipped to a 20 m buffer around the distribution
lines. Then unsupervised image classification [22] is applied.
The iso-cluster is set to 40 classes in all datasets. In the next
step the classes are reclassified to “vegetation class” and “non-
vegetation class”, and converted into a polygon shapefile. The
vegetation class is transferred to the next step (spatial correla-
tion), and the rest is discarded. In Fig. 2 we provide examples
of the unsupervised classification (a), and the resulting map
after reclassifying (c). Map (b) is in Fig. 2 for visual reference.

The result of image processing is a set of historical maps
with vegetation locations. These maps are then spatially joined

with the Ecological Mapping System of Texas (EMST) devel-
oped by the Texas Parks and Wildlife Department [23]. The
EMST data contains the classification by vegetation type into
398 distinct classes, out of which 49 classes are present at the
network location of interest. The average canopy height for
49 vegetation classes in the network area is then added to the
vegetation dataset as a parameter.

C. Spatial Correlation of Data

The purpose of the spatial correlation module is to pro-
vide spatial links between different data sets. For example,
for every historical outage we want to know the weather
conditions at that specific location, the distance between the
line and the closest tree, the location of areas that were
trimmed, etc.

The spatial correlation module is presented in Fig. 3. We
distinguish three parts of the spatial processing module:

• Weather data processing encompasses creating the
weather data grid that is overlaid on the utility network
and has a spatial resolution of 1 km. The weather param-
eters in each grid cell are calculated from the weather
station values using linear interpolation.

• Vegetation data processing extracts the vegetation indices,
such as distance between the lines and vegetation and
growth rate, using spatial links between multiple pre-
processed vegetation files. All the calculated parameters
are stored as attributes in the final vegetation polyline
shapefile.

• Utility data processing converts the historical tables to the
shapefiles identifying the locations of points and polylines
based on the line section codes and/or addresses provided
in the utility’s CSV files. In addition, every reactive tree
trimming action is correlated with the outage that lead
to it.

To deal with different spatial resolutions of data we used
multiple approaches all included in Fig. 3. We used spatial
interpolation where weather data was extracted for every loca-
tion in the network based on the original weather station
data with sparse locations. In other instances, data was pro-
jected to a nearby location using a spatial join. For example,
the distance between the line and vegetation is projected to
the line using a spatial join based on distance.

Authorized licensed use limited to: Texas A M University. Downloaded on December 24,2023 at 12:29:00 UTC from IEEE Xplore.  Restrictions apply. 



DOKIC AND KEZUNOVIC: PREDICTIVE RISK MANAGEMENT FOR DYNAMIC TREE TRIMMING SCHEDULING FOR DISTRIBUTION NETWORKS 4779

Fig. 3. Spatial correlation of data.

D. Temporal Correlation of Data

The temporal correlation module has five historical input
datasets (weather, vegetation, outage, periodic tree trimming,
and reactive tree trimming), and real-time weather forecast
input. Each dataset contains a variety of parameters (attributes)
from Table I, and is stored as a GIS shapefile. Static datasets
(network feeders and poles) are assumed not to change over the
observed period, and do not require any temporal correlation.
Fig. 4 presents an overview of the temporal correlation module
containing two major parts: 1) historical data processing, and
2) real-time data processing. The final product of historical
data processing is a training list for the prediction algorithm.
The real-time data processing generates input data for the
real-time risk maps by generating the data for hazard, vul-
nerability, and economic impact that feeds the dynamic tree
trimming scheduler, which will be described in the following
sections.

The temporal resolution is guided by the occurrence of out-
ages. For every outage we want to extract, all the relevant
information is included as presented in Fig. 4. For each out-
age, the data points that are closest in time are chosen from
each set individually. For example, in the case of historical
weather data, the closest data points were within one minute
of outage. On the other hand, the closest vegetation maps could
be up to several weeks apart.

IV. VEGETATION RISK MANAGEMENT

Fig. 5 presents an overview of the predictive spatiotemporal
risk model. For every moment of time, each network compo-
nent is assigned a state of risk value. To enable spatiotemporal

analysis, the state of risk R is defined as follows [24]:

R(G, t) = P[T(G, t)] · P[C(G, t)|T(G, t)] (1)

where G represents the longitude and latitude of a single ele-
ment, and t represents the moment in time for which the
observation is made. A unique state of risk value is assigned
to each distribution feeder section. T(G,t) represents the threat
intensity. Threat intensity is defined as a qualitative met-
ric of the weather condition severity. The first term in (1)
marked P[T(G,t)] is a hazard probability. Hazard represents
the probability of occurrence of a severe weather condition
with the selected threat intensity. The details on how the
Hazard is calculated are provided in Section IV-A. The sec-
ond term marked P[C(G,t)|T(G,t)] is network vulnerability,
where C(G,t) is an occurrence of a consequence. Vulnerability
is a conditional probability of the consequence (vegetation-
caused outage) in the distribution network if and when severe
weather is present. The details on how the Vulnerability is
calculated are provided in Section IV-B. The risk definition
presented here is an adaptation of definition in [25] where
the last part of the risk-economic impact is not included. In
this paper, the economic impact is calculated separately and
included in the optimal tree trimming scheduler as one of
the optimization constrains. The details of how the economic
impact is combined with the risk framework are described in
Section V.

A. Hazard

In eq. (1), P[T(G,t)] is a hazard, calculated based on the
weather forecast data for a specific time and location. The
data from the National Digital Forecast Database (NDFD) [26]
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Fig. 4. Temporal correlation of data.

TABLE I
PARAMETERS EXTRACTED IN PREPROCESSING

Fig. 5. Spatiotemporal Prediction Model, [15].

is used. The database contains the forecast up to 7 days in the
future with time resolution of 3 hours. The updated forecast is
provided every 3 hours. The spatial resolution of the weather
forecast data is 5 km. Because the weather forecast data is

updated every 3 hours with maximum resolution of 3 hours,
the risk maps are generated with the same 3 hours resolution.

The following parameters are observed: wind speed, direc-
tion, and gust, temperature, relative humidity, convective
hazard outlook, probability of critical fire, probability of
dry lightning, hail probability, tornado probability, probabil-
ity of severe thunderstorms, damaging thunderstorm wind
probability, extreme hail probability. Based on the values of
the observed parameters, the threat level is classified into
6 groups from 0 to 5, where 0 represents normal weather
conditions without any potentially severe elements, and 5 rep-
resents extremely severe weather conditions. The k-means
clustering [27] was used for classification into 6 groups. The
k-means clustering enables the construction of hazard conse-
quence levels from the individual weather parameters. This
way, multiple different parameters are combined into a single
parameter Threat Intensity with 6 different states. The clus-
tering is done using historical weather data, where different
configurations of weather parameters are associated with their
measured impact on the outage occurrence. Then the Hazard is
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TABLE II
HAZARD CLASSIFICATION

TABLE III
PROBABILITY OF THREAT LEVEL OCCURRENCE

TABLE IV
THREAT INTENSITY LEVELS

constructed as a heat map in Table II, where each threat level
has an assigned probability of occurrence determined based
on weather forecast. The construction of heat map is based
on the [28], where heat maps are constructed following two
steps: 1) constructing the probability matrix as in Table III,
and 2) constructing the threat intensity matrix as in Table IV.
The Hazard value ranges from extremely low marked as the
green color in Table II to extremely high marked as the red
color in Table II.

B. Vulnerability

A GCRF is used for the prediction of network
vulnerability [29]. The GCRF model uses a weighted graph
as a data structure, which enables the exploitation of spatial
similarities between the nodes for the improved prediction
capability. The data are processed in sequential order cre-
ated during the temporal correlation of data. The algorithm
is capable of processing partially observed data [30], which
is of benefit since within the collected data, several historical
outage instances are missing some of the weather parameters.

The GCRF predicts the state of vegetation impact, denoted
y, based on historical measurements in the input vector x. The

GCRF expresses the conditional distribution as:

P(y|x) = 1

Z
exp

⎛
⎝ −

N∑
i=1

K∑
k=1

αk(yi − Rk(x))2−

−
∑
i,j

L∑
l=1

βle
(l)
ij S(l)

ij (x)
(
yi − yj

)2

⎞
⎠ (2)

where Z is a normalization constant, x is a set of input vari-
ables coming from historical measurements, y is a set of output
variables, N is a total number of nodes (line sections) in the
network graph, Rk are unstructured models where k is the num-
ber of predictors, Sij represent similarities between outputs at
nodes i and j determined based on their geographical distance,
L is a number of branches, α are parameters of the association,
and β are the interaction potentials.

The following historical measurements are stored in the
input vector x: wind speed, wind direction, wind gust, precip-
itation, temperature, humidity, pressure, vegetation distance to
the line section, vegetation spread, vegetation growth rate, veg-
etation health index, pole height, tree trimming period, time
since last tree trimming, outage duration, number of customers
affected. The output y of the algorithm is the predicted state
of vegetation impact on the feeder section.

The parameters α and β from the Eq. (2) can be estimated
by maximizing the conditional log-likelihood from our training
set, (3) and (4), and applying the gradient descent optimization
algorithm:

L(α, β) =
∑

log P(y|x) (3)

(α, β) = arg max
α,β

(L(α, β)) (4)

The historical outages are an integral part of the
Vulnerability. The prediction of future vulnerability is done
based on the knowledge collected from the previous out-
ages. As listed in Table I, the historical outage data contains
information about the duration of the outage and the num-
ber of customers affected by it. This information guides the
prediction algorithm to generate higher vulnerability levels in
the cases where more customers were affected by the outage
and for the greater duration.

V. OPTIMAL TREE TRIMMING SCHEDULER

There are two types of costs associated with the tree
trimming:

• Periodic tree trimming has a preset cost since it follows
a predetermined schedule.

• Reactive tree trimming includes two types of actions:
a) only the faulted area is trimmed, and b) an entire circuit
is trimmed. Reactive tree trimming cost varies depending
on the events in the network.

The goal of the optimization model is to minimize the over-
all risk of the system while maintaining the budget allocated
for the periodic tree trimming. To achieve that, the quarterly
periodic tree trimming schedule is designed based on the risk
prediction for the next 3 months. The time instances when the
risk map is created are every three hours during a three-month

Authorized licensed use limited to: Texas A M University. Downloaded on December 24,2023 at 12:29:00 UTC from IEEE Xplore.  Restrictions apply. 



4782 IEEE TRANSACTIONS ON SMART GRID, VOL. 10, NO. 5, SEPTEMBER 2019

Fig. 6. Distribution of historical vegetation caused outages.

Fig. 7. Hazard Map for 02/23/2016.

period. A total of T time instances is created each quarter. The
risk is calculated for each of the N feeder sections. An opti-
mized tree trimming schedule is determined by solving the
following optimization problem:

max

{
R =

T∑
t=1

1

N

N∑
n=1

�Rn,t · Fn,t

}

Fn,t =
{

0, section n not trimmed at time t
1, section n is trimmed at time t

(5)

where �Rn,θ = Rn,(θ−1) − Rn,θ is the difference in risk value
for feeder n before and after the tree trimming is performed.

Fig. 8. Vulnerability Map for 02/23/2016.

Fig. 9. Risk Map for 02/23/2016.

The following constraints are enforced:

T∑
t=1

N∑
n=1

Fn,t · PCn,t ≤ PA (6)

For t = 1, . . . , T,
∑N

n=1
Fn,t ≤ 1 (7)

where R is a total reduction in risk, PCn,t is the cost of
tree trimming of section n in the time instance t; and PA is
a total budget allocated for the periodic tree trimming during
the observed quarter. The optimization problem is nonlinear,
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Fig. 10. Calculated risk at the end of training for the outages that occurred at the end of 2015 and beginning of 2016.

and it is solved using the enhanced linear programming relax-
ation with the Lagrangean relaxation plus heuristic method
described in detail in [31].

While a reduction in reactive tree trimming cost is not an
explicit goal of the optimization problem, it is still calculated
to check the impact of risk reduction on the reduction in reac-
tive tree trimming cost. To do that, the reactive tree trimming
orders are iterated and for each one it was checked if the devel-
oped tree trimming scheduler recommended trimming of the
area prior to the outage. If an area is part of the recommended
tree trimming schedule in a time frame before the reactive tree
trimming was performed, the reactive tree trimming cost is
deducted from the total.

VI. RESULTS

The observed utility distribution network has an area of
∼2,000 km2. It contains ∼200,000 poles, and ∼120,000 lines.
The historical outage and weather data were collected for
the period from January of 2011 up to the end of April
of 2016. Over this period, 505 weather-related outages have
been observed in the area, where a total of 331 outages were
vegetation-caused (Fig. 6). The training set for a prediction
algorithm consists of the first 300 historical outages in
temporal order. The remaining 31 outages that occurred
at the end of 2015 and beginning of 2016 are used as
testing set.

A. Risk Maps

The example of the predicted Hazard and Vulnerability map
for an outage event that occurred on February 23, 2016 is
presented in Fig. 7 and Fig. 8 respectively. The weather haz-
ard is presented as a grid covering the area of the network,
while the vulnerability is assigned to each line section indi-
vidually. The resulting predicted risk map for the observed
date is presented in Fig. 9. As it can be seen in the upper
right corner the predicted risk value on the faulted section
for the outage in the Fig. 9 that occurred on 02/23/2016
was 84%.

The predicted risk values for all 31 test outages are
presented in Fig. 10. The minimum risk value during an outage
is 64%. There are 6 instances for which the risk probabil-
ity was less than 75%, all of which occur during the days
with a low weather hazard. The authors would like to specu-
late that in the absence of weather hazard information, when
the algorithm is limited to predicting the risk based only on

Fig. 11. Quarterly Tree Trimming Schedule.

vegetation indices, performance is limited. Further investiga-
tion could be conducted with the larger dataset to test the
hypothesis.

B. Tree Trimming Scheduler

An example of the developed tree trimming schedule for
one quarter is presented in Fig. 11. The zones with different
colors (not black) represent the areas of the network that need
to be trimmed in the selected quarter. These zones change
every quarter. The areas that need to be trimmed sooner are
represented with red while the areas that need to be trimmed
later are represented with green color.

Overall outage risk for the selected quarter is calculated as
follows:

R =
T∑

t=1

1

N

N∑
n=1

Rn,t (8)

The optimal tree trimming schedule reduced the overall
outage risk of the network for the period of three months
by 32.85%. In addition, the reactive tree trimming total cost
described in Section V was predicted to be decreased by
27.2%.
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VII. CONCLUSION

The presented research differentiates itself by the use of
an extensive set of data. We correlated different datasets and
developed a predictive risk model that utilizes spatiotempo-
ral data to produce real-time risk maps for the distribution
network. The prediction algorithm, based on a GCRF model,
leverages the spatial similarities between different feeder sec-
tions to ensure better prediction performance and compensate
for missing data. The resulting risk model allows the imple-
mentation of a dynamically changing trimming scheduler that
optimizes the tree trimming process. It is shown that the
achieved reduction in risk has the potential of reducing the cost
of reactive tree trimming. The method was applied to a real
distribution network and utility data. The testing confirms that
the outages occurred in the zones with risk predicted to be
greater than 64%, which suggests a new predictive paradigm
for vegetation management strategies.
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