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Summary 

The power system operators, as well as asset and outage management personnel are now experiencing 
significantly enlarged amount of data obtained through field measurements, historical maintenance records, 
and external sources such as variety of weather data. In this paper we surveyed our work focused on the role 
of machine learning (ML) and artificial intelligence (AI) methods applied to a) managing and controlling future 
power system by automatically analysing transmission line faults using synchrophasor data, b) predicting the 
risk of forced outages in the distribution system using historical outage records and weather data at different 
spatiotemporal horizons, and c) examining how the outage risk predictions may be used to determine 
availability of the distributed energy resources (DERs) for participation in the wholesale market ancillary 
service products (ASP) aimed at aggregators bidding for ASP aiming at preventing overall system outages.    

We start our survey with first discussing development of data models for automated faults analysis using 
synchrophasor data and indicate how the ML model training and testing may be done using both field-
recorded and model-simulated data. We illustrate such approaches using recent studies where we had access 
to utility synchrophasor data, and we point out to the variety of data issues that must be carefully examined 
when such applications are developed.  

Next, we focus on introducing the concept of State of Risk (SoR) prediction, and associated optimization 
techniques aimed at minimizing or eliminating the distribution system outage impacts through appropriate 
risk management and mitigation measures. We present experiences from recent utility demonstration 
projects where we used the historical outage data combined with variety of weather data to develop SoR 
maps for predicting risk of outages. We also suggest a set of mitigation measures aimed at helping the utility 
customers to deal with outage impacts ahead of the time.   

As a final example, we elaborate on the issue of aggregation of DERs with a purpose of meeting Ancillary 
Service Product (ASP) requirements designed to help market operators maintain power system reliability and 
integrity during imbalances between supply and demand.  We illustrate how the SoR outage prediction may 
be used to improve the bidding strategy for the aggregators. 

In the conclusions, we highlight how ML/AI methods may be utilized to enhance reliability and resilience of 
power system operation at the transmission and distribution level, as well at the level of the end customer.  
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1. Introduction 

ML/AI have been used in power systems to deal with the big data problem for the last decade [1]. 
During this time many applications have been developed and some have been demonstrated using 
utility data [2]. One of the key findings was that ML/AI may be effective if variety of historical data is 
available and properly labelled and stored for future issues. Particularly, the weather data turned out 
to be very useful when predicting power system outages and planning for resilient electric grid 
operation [3,4]. 

Our focus in this paper is on three applications where ML/AI may be used to create automated 
assessment of power system operation, which in turn may be used to enhance power system 
resilience against disturbances and imbalances between power supply and demand.  

First, the discussion is focused on the use of ML/AI in detecting and classifying power system faults, 
and other disturbances that may lead to system-wide power system outages. We examine the use of 
synchrophasor data for building the data models for automated analysis of streaming synchrophasor 
data captured by phasor measurement units (PMUs) sparsely located in the field. Based on our 
recent experiences from projects that use field-recorded data, we reported many possible 
approaches to developing ML/AI models to help operators deal with making decisions under an 
overwhelming volume of synchrophasor data that may be used to analyse the events online [5-11]. 
We also summarized our experiences in recent CIGRE papers [12-13]. In this paper we addressed 

some key issues when developing ML/AI models, 
namely the data quality, feature selection, and 
data model training.    

The next application we present is related to 
prediction of outages in the distribution networks. 
As may be seen from Figure 1, the outages are 
mostly caused by weather, vegetation intrusion 
and equipment failure due to wear and tear.  

We formulate the concept of the state of risk 
(SoR) prediction that is based on weather data 
and historical outage data. We combine such data 
using ML/AI methods and create SoR maps that 

represent the risk of outage occurrences due to inclement weather and environmental conditions 
such as vicinity of trees. In an earlier example, we illustrated how such SoR maps may be used to 
optimize the vegetation management tasks aimed at reducing the number of outages caused by 
trees growing into the distribution feeders [14]. We also examined how wind modelling may be used 
to estimate such intrusion caused by high winds blowing the tree branches into the feeders [15]. In 
this paper we share our experiences aimed at selecting the weather data, developing spatiotemporal 
SoR maps, and deciding on the mitigation strategies that may be used by the utilities and customers. 

Our final application is related to preserving power system operation under grid stressful conditions 
by utilizing DERs through aggregation and participation in the ASPs [16]. In the past, we focused on a 
particular ASP related to the flexiramp service that may be offered by DER aggregators [17]. Recently, 
we focused on how the aggregators may develop their biding strategy using SoR outage predictions 
under inclement weather conditions [18]. In this paper we elaborate on why the aggregator faces 
uncertainty in its bids for ASP, how such uncertainties may be mitigated by making estimates of DER 
energy resources under outage conditions, and how such mitigation measures may be incorporated 
in the aggregator ASP bidding strategies.  

We conclude the paper by pointing out the benefits and challenges when using ML/AI approaches to 
enhance the grid reliance under inclement weather conditions causing grid outages and instabilities.     

 

Figure 1. Major Causes of power outages in the USA 



Paper number 1185  
SC B5 – Protection and automation  
Stream 3. Towards a sustainable power system  

m-kezunovic@tamu.edu P a g e  | 3 

2. Data Models for Automated Analysis of Faults Using Synchrophasors 

The use of synchrophasor data from PMUs for power system protection has become increasingly 
important in recent years. Machine learning algorithms have shown great promise for improving 
power system protection and fault analysis using PMU data. The development of an effective 
machine learning algorithm for detection and classification of faults starts at data preprocessing. The 
quality of input PMU data can highly impact the performance of any machine learning model that 
works with the data. It has been a common experience that PMU data can be influenced by factors 
such as PMU measurement errors, data communication dropouts, and missing or corrupted data, 
which are the issues that must be addressed before moving on to the next step, feature extraction. 
Feature extraction is a crucial step since the extracted features are used to describe the underlying 
patterns in the data and highlight the relevant information for the model to learn from. 

With the extracted features, several models can be designed to perform the analysis of any set of 
events captured by PMUs. Multiple factors may be varied to train the machine learning models 
chosen to perform the study, including the type of machine learning algorithm, the way the data is 
split into training and testing subsets, hyperparameter tunning etc. For example, depending on the 
data distribution and the type of events targeted by the study, a temporal split may be more useful 
than a random split of training and testing data. It is also crucial to address any imbalances in the 
data. The unbalanced dataset, where enough instances of each class of events are lacking, can lead 
to poor performance when a machine learning algorithm is tested on field data. 

2.1. Data Quality 

The wide deployment of PMUs across the power system has made it possible to perform fault 
analysis, among other studies, using field-recorded data, as opposed to using only simulated data. 
Our experience with fault analysis using synchrophasor data revealed that the main issues that field-
recorded PMU data suffers from is missing data, outliers, data duplicates, and inconsistent values [9]. 
The labels that accompany these recordings are the most valuable source for training a supervised 
learning model since they contain information about fault start and end times, fault type, and other 
descriptions such as the cause of the fault. In our experience, they might exhibit a slightly shifted 
fault time or, occasionally, the wrong fault type. The most dependable approach to mitigate this 
problem was for a domain expert to visually inspect and apply any necessary corrections to these 
labels. This solution is not a practical one for all the labels created for all recorded PMU data given 
how much effort and time it requires. However, in the case of developing and training specific fault 
detection algorithms, it is the most effective way to ensure that these machine learning models 
would be trained and tested on credible data [12,13]. 

Missing data proved to be most challenging for many PMUs in several datasets. Figure 2 shows the 
percentage of missing data among these PMUs for different PMU measurements [12]. In some cases, 
especially when the percentage of missing data exceeded 60%, it proved beneficial to exclude 
specific PMUs from a dataset. Otherwise, data quality issues have been mitigated using data 

preprocessing techniques as well as 
machine learning models that are 
specifically designed to deal with noisy 
data. Using a multi-modal data approach 
to integrate data from various sources 
such as weather data, maintenance 
records, and fault records can 
significantly enhance the overall quality 
of data [5]. Additionally signal processing 
techniques such as the Butterworth filter 
to remove high frequency noise [6] or 
Empirical Mode Decomposition (EMD) to 

 

Figure 2. Percentage of missing data of one PMU dataset 
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decompose the data into simpler and more manageable components [5] have been used successfully 
in the data preprocessing stage. To handle the size of large PMU datasets computationally effective 
approaches were proposed in [19,20]. 

2.2. Feature Extraction 

Feature extraction is another step of the algorithm development process that may either be done in 
a systematic way that relies on the understanding and experience of domain experts or it may be 
done as part of the algorithm’s learning process. Fast feature extraction technique based on 
frequency thresholds was used in [19] to identify frequency events. The feature named “Rectangular 
Area” computed from PMU reported voltages and frequencies was shown to be a powerful predictor 
of different events [20]. A more complex approach of hierarchical convolutional neural network 
(HCNN) was utilized in [6]. Several convolutional layers helped in extracting non-linear latent features 
at multiple levels of abstraction. The hierarchical approach leads to features extracted at different 
levels of granularity, from raw PMU measurements to event-level features. The HCNN approach 
helped in identifying relevant features and improving the performance of the models. Similarly, 
combining the use of a convolutional neural network (CNN) and a sliding window approach to extract 
short-time Fourier transforms of the data helped in identifying relevant features and reducing the 
noise in the data in [8]. Physics-based feature engineering has also been pursued by our team in 
several studies. For the study of low-frequency oscillation events in the power system, for example, 
features were extracted based on the Prony method of modal decomposition of the signals [10]. The 
decision to extract these features was based on knowing the relevance of Prony analysis to the 
aspects of low-frequency oscillation in the power system such as oscillation frequency, amplitude, 
and damping ratio. For identifying different classes of line faults, features were engineered from the 
three-phase voltage signals recorded by PMUs. To capture the patterns of voltage drops of these 
classes, the features consisted of a normalized sum of the difference between the maximum and 
minimum voltage values within a sliding time window [11].  

2.3. Data Model Training 

An important decision to make regarding data model training is how to split the data into training 
and testing datasets. Splitting data randomly, for example, might lead to overlapping in the training 
and testing data when an event’s signature exists over several time windows. This problem was 
encountered while training low-frequency oscillation detection models [10]. Splitting the data purely 
based on a temporal split can risk not training a model on a specific type of event that only exists 
within a specific time range in the data. A convolutional neural network architecture that considers 
the temporal relationships between phasor measurements was the approach successfully employed 
in [8], where the training process included data augmentation and the selection of hyperparameters. 

Oftentimes, even with the presence of good-quality PMU data, properly labeled and varied training 
data is not sufficient to start training machine learning models. Data labels are generally imbalanced 
to reflect the events that are more common in the system, which leads to a scarcity regarding other 
events that appear less frequently. The challenge of scarce labeled data was addressed in [7]. A 
transfer learning technique was used, in which pre-trained deep neural networks were utilized to 
learn relevant features from the data. The transfer learning approach helped in leveraging the 
features learned from a large dataset in one power system and applying it to a smaller dataset to 
improve the performance of the models in another. Another solution for scarce labels is the use of a 
synthetic network to create simulated PMU data that can be integrated with field-recorded data [11]. 
Simulated data seems to be unrealistically stable and constant in the time surrounding a fault, which 
makes it not dependable as the only source of training data. Nevertheless, the integration of 
simulated data with field-recorded data in [11] to balance the number of instances of each fault class 
has remarkably improved the performance of the machine learning classifiers.  
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3. Outage Risk Prediction Using Weather and Historical Outage Data   

Outages in power systems pose significant safety hazards and economic burdens on society. Utility 
companies are increasingly concerned about frequent outages in the distribution network and the 
need to improve the quality of electrical supply to customers while enhancing the grid's resilience. 
The environmental conditions such as strong winds, lightnings, rain/snowstorms etc. contribute to a 
majority of the forced outages in the power systems.  

Recent advancements in ML algorithms offer a promising solution to the problem. By using ML 
models, one can predict the risk of outages and take preventive measures to enhance grid resiliency, 
lower economic losses, and increase customer satisfaction. The combination of Big Data, machine 
learning, and geographic information system (GIS) software enables the analysis of historical outage 
data to construct an ML model that predicts risk levels for individual parts of the system on desired 
time horizon. This approach enables utility companies to take proactive measures to mitigate outage 
risks by developing dynamic tree trimming schedules, issuing customer notifications, initiating 
backup generator start-ups, and executing targeted restoration plans for specific parts of the system 
[21].  

3.1. Data Selection and Processing 

The solution utilizes the information about weather conditions in the proximity of the fault 
appearances from the past. We begin with cleansing the historical outages dataset and determining 
where and when the faults occurred in the system. The outage dataset usually spans 4-7 years. We 
then turn to the providers of historical weather datasets, such as National Oceanic and Atmospheric 
Administration (NOAA) [22], to obtain the weather data for the selected time in the region where the 
network is located. The weather data may include several parameters, such as wind speed and 
direction, temperature, humidity, air pressure, cloud cover, precipitation etc. When using multiple 
sources of data, one needs to pay close attention to proper data alignment in both temporal and 
spatial dimensions. Weather data is not the only source of useful information for the solution. The 
satellite and aerial imagery, vegetation indices, radar data, lightning detection networks data, the 
history of previous trimming schedules etc. may provide valuable addition to the weather data and 
enhance model performance [23,24]. Once data is collected and stored, it must be preprocessed, 
cleaned, and transformed into the suitable form. Bad and missing data handling are implemented at 
this stage.  

A critical dataset used for the application is the historical outage dataset, which reflects the location 
and time of past outages in the system. Such dataset is usually proprietary and is maintained by a 
utility company. The outage information needs to be processed as well, to select only 
environmentally related outage instances. Outages that were a result of a human error during 
maintenance events are discarded.  

The next step is the spatiotemporal correlation of faults and weather. Projecting all available data 
into the same coordinate system and using single time zone is advised. In such manner we have 
gathered data that reflects the environmental conditions, for each given fault in the system. 
Additionally, we need a comparable number of instances, where the faults did not occur. These 
examples are usually selected randomly from the same period of operation. The resulting dataset 
serves as a foundation for the training of the ML algorithm. The algorithm learns to discern between 
non-hazardous conditions when the grid operates normally and high-risk conditions when the faults 
occur.  

As the nature of the faults is probabilistic, the output of the model is outage State of Risk (SoR). It 
reflects the estimated probability of an outage occurrence in the given period for a given part of the 
power grid [25].  
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3.2. Developing spatiotemporal SoR maps 

Prediction of the SoR levels paves the way for risk-aware grid operation. One of such applications is 
SoR maps that are designed to convey the information of the grid vulnerabilities under given weather 
conditions. The SoR map is created by projecting the ML model's predicted outage SoR levels onto 
the GIS map superimposed on the power grid.  

SoR maps can mainly be used in the control room by the utilities for day-to-day operations. The 
examples of SoR maps for low-risk and high-risk conditions are presented in Figure 3. Since the SoR is 
always a number between zero and unity, one can predefine the color scheme where each risk 
interval would correspond to a different color.  

Different spatiotemporal resolutions can be utilized for SoR maps. Spatially, one can narrow down to 
a single feeder or have an average SoR reflected for a part of the network that may consist of several 
substations. Temporally, ML model can be trained to output predictions every hour based on short-
term weather forecast or a model can be focused on estimating risk for a next several days. The ever-
present trade-off between model performance and spatiotemporal resolutions is influencing the 
selection of the optimal level for temporal and spatial horizons.  

SoR maps enhance situational awareness of personnel and enable their quick assessments of current 
conditions. The areas with risk over a preset threshold may be further emphasized to draw 
operator’s attention. In addition to improving situational awareness, SoR maps can also be utilized to 

inform decision-making and risk 
management strategies. By visualizing areas 
with higher risk, personnel can prioritize 
their efforts and resources towards 
mitigating those risks and reducing the 
likelihood and impact of adverse events. 
Another application of SoR maps is to 
facilitate identification of trends and 
patterns in risk levels over time, which can 
be used to create long-term risk 
management plans and strategies. By 

analyzing the data from SoR maps, utilities can gain insights into the underlying causes of risk and 
develop effective measures to address them. 

Overall, the novel approach of SoR maps creation is a valuable tool for enhancing resiliency and 
reducing risk. By providing clear and actionable information about risk levels, these maps can help 
prevent outages, protect personnel and assets, and improve overall operational efficiency and 
effectiveness.  

3.3. Outage Mitigation Strategies 

The SoR levels serve as a basis for consequent outage mitigation strategies. Mitigation measures 
range in volume, scale, time, impact and enacting entity. The ways that a utility may address the 
high-risk conditions are different from mitigation actions that a customer would employ. Depending 
on time horizon that is used to obtain SoR levels in the grid, operator or a customer can implement 
various mitigation actions.  

For the short time horizon, it is important to communicate the possible risks to the customers. 
Industrial, residential and commercial types of customers can deploy various mitigation measures, 
depending on the resources they possess and how critical electrical supply is for their 
operations/activities. These may include back-up generation start-up, food and water storage, 
corrections to business hours, alternative transportation routes etc. Given a prior notice to 
customers, one turns an unexpected outage into planned outage, reducing the detrimental random 
impact.  

 

Figure 3. High and Low risk conditions on SoR maps 
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For long time horizon, stakeholders may use strategies that take longer to deploy. Utilities can use 
adaptive tree trimming schedules to target the areas with substantial risk. Risk levels can be 
considered when planning for grid expansion or modernization. Equipment maintenance can also be 
prioritized in the area with persistently high SoR levels. On the customer side, SoRs can be utilized to 
make decisions about investments into back-up power sources, energy storage or internal grid 
redesign for better resiliency. Businesses can also revise their list of suppliers and have agreements in 
place for outage conditions: delivery of non-essential goods and materials can get postponed during 
high-risk conditions, but for the essentials a plan of delivery, handover and reception, and storage 
may be developed. DER Aggregators may benefit from predicted SoR levels and adapt their strategies 
accordingly [18, 26].  

4. Aggregator Bidding Strategy for ASP Products Using Outage Risk Prediction  

A unique opportunity for DER profitability while improving the grid reliability and resilience is 
ancillary service products (ASPs) procurement in the wholesale electricity market (WEM) [27, 28]. 
DERs require a third-party entity named the aggregator to aggregate their resources and offer ASPs 
in the WEM on their behalf [29, 30]. The DER aggregator may benefit from the outage risk 
predictions to avoid over-procurement of ASPs in the day-ahead market (DAM) and prevent penalties 
for not delivering the committed amounts in real-time. The type of DER we are interested in, since it 

can be widely implemented, is distributed prosumer 
(DP). A DP has the power generation, consumption, 
and storage capabilities and is referred to residential 
or commercial building with rooftop photovoltaic 
generation (PV), controllable electric load and 
storage capacity such as fixed battery energy storage 
system (BESS) and/or electric vehicle (EV) chargers 
[31, 32]. The controllability of DP resources brings 
about the flexibility that can be harnessed for ASP 
procurement. The schematic of the DP/aggregator 
participation in the WEM is presented in Figure 4. 

4.1. Uncertanities in the Aggreator Bid for ASP 

The DER aggregator must submit its energy and ASP bids for the next day to the DAM. Hence, it 
needs to cope with different uncertain DER resources and make accurate forecasts. These 
uncertainties include PV generation, DP load, ambient temperature, EV arrival, departure times and 
initial state of charge (SoC) and market prices [33]. Another source of uncertainty stems from the risk 
of outages in the distribution grid, which can be assessed by the ML models presented in previous 
section. The distribution grid is the physical means of trading energy and delivering ASPs committed 
by DPs. Outages in the distribution grid may lead to the disconnection of DPs from the grid. During an 
outage, DPs use the energy stored in their storage resources to supply their load. Thus, when 
connected back to the grid, they may be drained of energy and not able to deliver the committed 
ASPs [25]. By providing the aggregator with the DP outage SoR predictions, it can make a more 
conservative bidding strategy such that it does not over-commit to ASP provision and avoid penalties 
for not delivering ASPs in real-time [34].  

4.2. Incorporating the SoR Prediction in the Aggregator Biding Strategy  

The coordination among the aggregator, DPs, distribution utility, and ISO is depicted in Figure 5. The 
distribution utility provides the DP customer energy management system (CEMS) with the outage 
SoR predictions [25]. The CEMS has the ability to (i) receive the SoR data from the utility, (ii) receive 
the control signals from the aggregator, (iii) send the SoR + resource status data to the aggregator, 
(iv) and manage the DP resources in normal operation and during outages. The aggregator receives 

 

Figure 4. Aggregator/DP participation in the WEM.  
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the outage SoR predictions from DPs. To tackle the uncertain nature of the bidding strategy problem, 
the aggregator needs to run stochastic optimization problem. It needs to define representative 
scenarios based on the historical data of the uncertain parameters and take advantage of stochastic 
optimization methods such as two-stage scenario-based, robust, and chance-constrained 
optimizations to solve such a problem [17]. Incorporating the outage SoR data into the bidding 
strategy problem enables the aggregator to make informed decisions in terms of the amount of ASP 
and energy to offer in the day-ahead and real-time markets [35]. The aggregator objective function is 
to maximize the profitability from energy trading and ASP procurement, which is subject to the 
technical constraints of DP resources, comfort of building occupants, uncertainty in parameters, and 
outage SoR predictions. The output of the optimization is the desired hourly ASP and energy 
amounts for the 24 hours of the next day that the aggregator submits to the DAM.   

4.3. Managing DER Resources During Outages 

During outages, the DPs must be able to supply their critical loads while minimizing their energy 
resources’ distortion from the optimal operating point so that when they are connected back to the 
grid, they are able to deliver the committed ASP amounts. The DP resource management during 
outage is presented in Figure 6 [25]. First, the uncritical deferrable loads are postponed, and the 
thermal load is set to its minimum (comfortable temperature range is set by occupants). Next, if the 
remaining load is greater than the PV generation, the stored energy in the BESS and plugged EVs is 
used for power generation; otherwise, the extra PV power is stored in the EVs and BESS.  

Conclusions 

Using the three examples we illustrated several points about the use of ML/AI in dealing with faults 
and outages: 

• In the transmission grid, synchrophasor data may be used to detect and classify faults and 
other disturbances online, which can help system operators make quick decisions how to 
mitigate the impacts in real time. 

• In the distribution system, historical outage and weather data may be used to predict SoR of 
outage occurrence leading to preventive mitigation measure to reduce the impacts., which 
improves the resilience of the distribution grid 

• In the customer owned DP system, a CEMS may be implemented to assess the internal 
energy resources and possible impacts of the grid outages, and inform aggregator what level 
of support to expect from the DP when procuring ASPs in WEM 

• The use of ML and AI is inevitable in power system applications as the amount of data 
available to improve operator actions increases, overpowering the cognitive ability  of 
decision-makers to react in real-time unless the data models provide automated support  

 

Figure 5. Coordination among utility, DP, aggregator and ISO.  
 

Figure 6. Resource management for 
disconnected DPs.  
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