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M. Kezunovic, Senior Member E. Soljanin 
Texas A&M University 

U.S.A. 

Abstract - This paper introduces a new approach to  the de- 
sign of digital algorithms for electric power measurements. Dig- 
ital algorithms for electric power measurements are represented 
as 2D digital FIR filters applied on voltage and current sam- 
ples. Based on this approach, a new technique for algorithm 
design is developed. As the main advantage, the technique pro- 
vides a convenient way to  design new algorithms for measuring 
the electric power components according to various definitions 
in both sinusoidal and non-sinusoidal conditions. Several new 
algorithms are derived by using the proposed design technique. 
The existing algorithms for power measurements are also de- 
rived by using the new approach. The algorithm performance is 
tested using actual signal recordings. 

Keywords: Electric power measurements, Active and reac- 
tive power, Digital signal processing. 

INTRODUCTION 

Power components in electric power systems with sinusoidal, 
non-sinusoidal linear, and non-sinusoidal nonlinear circuits are 
to  be measured for various purposes such as revenue metering, 
power factor compensation, and control. While definitions of 
power components are well known in sinusoidal systems, there 
are no universally accepted definitions for these quantities in 
non-sinusoidal systems [1]-[7]. Various definitions for power com- 
ponents in non-sinusoidal linear systems [1]-[4], and in non- 
sinusoidal nonlinear systems [5]-[7] have been proposed so far. 

As well as a lack of universal and practical definitions, lack of 
appropriate measurement technique is also present. Currently 
available analog meters, designed and calibrated for sinusoidal 
systems are found to  be unsuitable under non-sinusoidal cir- 
cumstances [8]-[ll]. Various algorithms for digital power mea- 
surement were proposed [12]-[17], and implemented so far [18]- 
[20]. However there is no digital algorithm proposed for reactive 
power measurements in non-sinusoidal systems. 

The objective of this paper is to  investigate and describe 
how power components can be measured digitally under sinu- 
soidal and non-sinusoidal circumstances by some of the defini- 
tions proposed in [1]-[4]. 

First, existing algorithms for power measurements are anal- 
ysed [12]-[14]. It has been found that all of them were originally 
developed for an analog system model and represent digital ap- 
proximations to  the analog processing schemes. It is shown that 
they all have the same digital form, which was defined earlier in 
[21]. This form was used to design algorithms for line parameter 
measurements with low sensitivity to frequency change as well 
as new algorithms for power measurements in sinusoidal systems 
[22]. The form was also applied in non-sinusoidal conditions [23]. 
This paper takes this digital form as a guide in developing the 
new approach to  the algorithm design. 
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Second, the new algorithm design approach is developed. 
The approach starts with defining an algorithm for digital power 
measurement as a sequence of computations performed on volt- 
age and current samples in order to obtain power. For the pur- 
pose of analyses the process of the computations is considered as 
two dimensional digital signal processing. The analysis is then 
performed in transformation domain and a general technique for 
algorithm design is developed. The technique is used to design 
the algorithms for measuring power components by various def- 
initions for power in sinusoidal as well as non-sinusoidal linear 
systems. 

The nature of the algorithm design problem is briefly de- 
scribed in the second section. Results of the analysis of the 
existing algorithms for digital power measurements are stated 
in the third section. A new design technique is proposed in the 
fourth section. New algorithms for power measurements are de- 
fined next. Finally some test results using field signal recordings 
are presented. 

THE NATURE OF THE ALGORITHM DESIGN PROBLEM 

Power components have to be measured according to differ- 
ent suggested definitions. In order to state the definitions and 
design metering algorithms, an adopted model for current and 
voltage signals is given first. The suggested definitions of power 
components, given a form convenient for digital implementation, 
are presented next. 

Signal model 

In the steady state conditions, voltage v ( t )  and current z(t) 
are periodic over the interval T .  Although not purely sinusoidal, 
they are assumed to contain a finite number of higher order har- 
monics. This assumption is valid most of the time. Periodic- 
ity of voltage and current signals is preserved in non-sinusoidal 
conditions as well. Due to the digital implementation, the sam- 
pling theorem requires band limited frequency spectrum. Finite 
frequency spectra of the signals are provided by low pass filter- 
ing. Therefore, the signals can be represented as a sum of their 
Fourier components as follows: 

Assuming that voltage and current signals are uniformly 
sampled a t  frequency U ,  = N2?rT, where N = 2 M  + 1 is chosen 
according to the Sampling theorem, the above equations have 
the following digital form: 

Various power definitions are based on different considera- 
tions of voltage and current signal relation. Also different appli- 
cations require measurements of different quantities. 

Power Component Definitions 

Several definitions proposed for measurements of power com- 
ponents in linear sinusoidal and non-sinusoidal systems are adopted 
from [l] - [4]. The corresponding expressions presented below 
are derived from the original definition expressions with voltage 
and current signals given by (1). 
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Active power may be expressed as: 

average power [2], [4]: 

M 1  
pa, = VOIO + -vk~kcos((pk - G k )  

k = l  

0 active power of the fundamental harmonic: 

1 PI = -v lACos(Cp1 - G*) 

Reactive power may be expressed as: 

Budeanu's reactive power [l]: 

0 Fryze's reactive power [ a ] :  

k=O k=O k = l  ' 

Kusters's inductive reactive power [4]: 

(3)  

(4) 

Kusters's capacitive reactive power [4]: 

reactive power of the fundamental harmonic: 
1 

Besides the problem of defining power components in non- 
sinusoidal system conditions, there is also a problem of their 
metering. As mentioned, existing meters designed to operate 
under sinusoidal conditions lose their accuracy in presence of 
higher harmonics. 

This paper proposes digital measurements of power compo- 
nents. In order to find techniques for digital algorithm design, 
existing algorithms for digital power measurement have been 
studied. 

ANALYSIS OF THE EXISTING ALGORITHMS 

Various algorithms for digital power measurements were pro- 
posed [la]-[17], and implemented [18]-[20]. All of them have 
originally been developed for an analog system model, and rep- 
resent digital approximations of the analog processing schemes. 
Having defined digital algorithm for power measurements as a 
set of computations performed on voltage and current samples, 
i n  oidei to obtain power, direct applications of digital signal 
processing seems more appropriate. 

The existing algorithms have been analysed in order to dis- 
close and formulate the actual digital signal processing they per- 
form. It has been concluded that although derived from different 
analog prototypes and for different purposes, all the algorithms 
have the same digital form, which has been taken as a guide 
for the new approach to the algorithm design. Results of the 
analysis are given below. 

There are merely three different digital algorithms for active 
and two for reactive power measurement published so far [12]- 

Malik and Hope assume that current and voltage signals are 
purely sinusoidal, and propose the following procedure for ac- 
t ive and rea.ctive power measurement [la]. First, voltage and 
current signals are resolved along the orthogonal reference axes 
as  follows: 

1141. 

Then, active power is obtained as the sum of the products 
of the in-phase components. Reactive power is obtained as the 
difference of the products of the quadrature components. This 
is given by the following equations: 

It should be noted that quantities Vd(t), V,(t), Id( t ) ,  I,(t) 
are not signals, but numbers independent of time when the in- 
tegration (10) is performed over the period T .  However, time 
t in the upper and lower integration limits is included to point 
out that the integration process can start a t  any time instant. 

Digital algorithms retain the same procedure but values (10) 
are computed digitally as follows: 

These equations can be used to express active and reactive 
power, as given by (11). in terms of voltage and current signal 
samples: 

Schweitzer assumes that current and voltage signals are purely 
sinusoidal, and proposes a similar procedure for active and re- 
active power measurement [13]. The difference is that voltage 
and current signals are not correlated with Fourier functions 
c o s y t  and sr12Ft as in ( lo) ,  but with Walsh functions sa l ($ )  
and cal( +), as follows: 

Then, active and reactive power are obtained by using the 
following equations: 

It should be noted that quantities Sv(t) ,  Cv ( t ) ,  S i ( t ) ,  Cr( t )  
are not signals, but numbers independent of time when the inte- 
gration (14) is performed over the period T .  However, time t in 
the upper and lower integration limits again is included to point 
out that the integration process can start a t  any time instant. 
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Digital algorithms retain the same procedure but values (14) 
are computed digitally, as follows: 

These equations can be used to express active and reactive 
power, as given by (15), in terms of voltage and current signal 
samples: 

= (stn")' + E:=-: ~ 2 i A  v,-ki,_,[sal$sal% + cal$cal:] 

\ -  , 
Turgel makes a digital algorithm for active power measure- 

ment by approximating the fundamental equation for calculating 
the average power ( 3 )  as follows [14]: 

where & ( I ;  - 777,) is defined as: 

1 i f k = m  
0 otherwise c5(k - m )  = { 

This concludes the review of current algorithms for digital 
power measurements. Equations (13), (17), and (18) have been 
derived to verify the claim that all of the algorithms have the 
following common form: 

(19) 
N - l  N-1 

P ( n )  hkrnvn-kin-rn 
k=O m=O 

It should be noted that power, as expressed by the above 
equation, is a function of time. However, a power component is 
a constant for a given voltage and current signal pair. Discrete 
time n in the above equation is to point out that calculation of 
a power component can be done at  any time instant based on 
N previous voltage and current signal samples. 

The conclusion that all of the algorithms have the same digi- 
tal form suggested the idea to  take that form as a starting point 
in algorithm design, and then by using two dimensional digital 
signal processing techniques, determine coefficients h k m  accord- 
i n g  to a particular power definition. 

NEW APPROACH T O  ALGORITHM DESIGN 

Existing algorithms for digital power measurements have been 
originally derived for different analog system models. However, 
they all have the same mathematical form. The form has been 
recognized as a bilinear form of voltage and current samples in 
[21]. It was used to  design algorithms for line parameter mea- 
surements with low sensitivity to frequency chan e 221, as well 
as new algorithms for power measurements [22], f231. 

When measured digitally, power components are actually 
computed based on voltage and current signal samples. The 
process of the computation can be looked at  as two dimensional 
digital signal processing, and can be analysed in that manner. 
Here, active, reactive and apparent power are obtained by means 
of 2D digital, FIR filters. The support to  this approach is the 
fact that in all current algorithms for digital power measure- 
ments this kind of filtering can be recognized, as given by equa- 
tion (19 . As stated above, powers are obtained as outputs of 2D 

are derived from the same filter-prototype, described below. 
digital 13. IR filters, connected in special schemes. All the filters 

o Inputs to the prototype, denoted by unlnz, are 2D separa- 
ble square periodic digital sequences: 

(20) = X n I Y n z  

Unit pulse response of a filter, denoted by h,,,,, is a 2D 
finite extent digital sequence: 

The prototype is assumed to be a linear shift invariant 
filter, meaning filter output, denoted by z,, ,,,, can be de- 
rived as convolution of its unit pulse response with its in- 
put as follows: 

ZnlnZ = ( h  * *U)nlnz (22) 

Thus filter output is also a two dimensional sequence. 
However, outputs of interest here are those where nl = 
n2 = n. They form a 1D sequence znn. 

Considering the above constraints, the input/output relation 
(22) for the prototype becomes: 

Here inputs (voltage and current signal samples) are known, 
and outputs (power components) are defined. The relation be- 
tween input, output and unit pulse response in the time domain 
is given by equation (23). Filter unit pulse responses (algo- 
rithms) are to  be derived to  give defined outputs for known 
inputs. The task is a deconvolution problem, and is not easy to 
solve in the time domain. Therefore it has been considered in 
the frequency domain. 

Since signals x, and yn are periodic, and h,,,, is of finite ex- 
tent, a two dimensional Discrete Fourier Transform (DFT) is the 
most appropriate for analysing the prototype in the frequency 
domain. Considered as circular convolution, the input/output 
relation (23) in the frequency domain becomes [24]: 

The filter output z,,, expressed as the inverse DFT, is given 
by the following expression: 

In order to be used for measuring power components, which 
are by all of the suggested definitions constants for given voltage 
and current signal pair, z,, should also be independent on n. 
Considering equation (25), this condition imposes the following 
constraint 011 the system function Hpq:  

H p , = O  if p + q # r N  r E { O , l }  

Therefore, equation (25) becomes: 
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Since sec1uencc.s ,r and IJ are given by (21), their DFT-s S 
and ? have following values (APPENDIX A): 

NXo p = o  

1 5 P < M  (27) 
- E X N - ~ ~ - J $ ~  Ad + 1 L: p 5 N - 1 

p = o  

(28) 

Substituting values given by (27) and (B), equation (26) 
becomes: 

2 = Ho,X,Yo+ (29) 

= p = l  

The e uation (29) in the frequency domain is equivalent to  
the input9output relation for the filter prototype (23) in the time 
domain. It is, however, more convenient for the filter designs. 

To design a filter means to derive its impulse response so 
that it gives defined output (a  power component) for known 
input (voltage and current signal samples). A power component 
is defined in terms of magnitudes and phase angles of voltage and 
current harmonics. The prototype output is also, by equation 
(29), ,defined in terms of magnitudes and phase angles of its 
input s harmonics. Only outputs that are of concern here are 
those of the form: 

3 = aoXoYo+ (30) 

where cy", . . . , Q , M ,  PI, .  . . ,PM are arbitrary constants. It is 
shown in the following section that knowing how to measure 
quantities of this form is enough to construct algorithms for 
measuring powers by all of the definitions given above. 

It  rcinains to specify the prototype impulse response so that 
it gives output (30) for input (21). Considering equation (30), 
the filter system function H should be chosen as follows: 

H o o  = cy0 

f i p ~ - p  = cyp  + jp ,  H , N - ~  = cyp  - jp ,  (31) 
Now the filter unit pulse response can be found as inverse 2D 
DFT of the filter system function as follows: 

p = 1,. . . , M 

Briefly, it has been proved that two dimensional filtering (23) 
with unit pulse response ( 3 2 ) ,  applied on signals (21), provides 
measuring quantities of the form (30). It is, however, possible 
to construct algorithms for measuring the powers by all of the 
definitions given above by knowing how to measure quantities 
of the form (30) only. 

YEW ALGORITHMS FOR POW-ER MEASUREMENTS 

Some of the power definitions can be derived directly from 
equation (30) by assigning x, = U,, y, = i, and giving certain 
values to constants c y o , .  . ,OM,  pl,. . . pM. These power com- 
ponents can be measured merely by applying filtering (23) on 
current and voltage samples. The other power definitions such 
as Fryze's reactive power, defined by (6),  cannot be derived from 
(30) the same way. However, these power components can be 

measured in a similar manner, by connecting several filter units 
each performing filtering ( 2 3 ) ,  in certain schemes. 

Avarage active power definition (3) can be derived from equa- 
tion (30) by assigning x, = v,, y, = i,, and cy0 = . . . = a ~  = 
1 .  R1 = . . . = @,,, = 0. This component ca.n be obtained by the 
measuring scheme shown in Figure 1, with (APPENDIX B): 

1 

h,,,, = GS(n1 - n2) (33) 

First harmonic's active power definition (4) can be derived 
from equation (30) by assigning x, = U,, y, = in, and a. = 
0, 01 = 1, cy2 = . . .  = CYM = 0, P1 = ... = PM = 0. This 
component can be obtained by the measuring scheme shown in 
FigiiiP 1. iv i th .  

2 2T 
N 2  N (34) h,,,, = -cos-(n1 - n2) 

First harmonic's reactive power definition (9) can be derived 
from equation (30) by assigning x, = U,, yn  = i,, and a. = 
... - - c y M = O ,  p1=1 , p 2 -  - . . . = P M = O .  This component can be 
obtained by the measuring scheme shown in Figure 1, with: 

Budeanu's reactive power definition (9) can be derived from 
cquation (30) by assigning rrq2 = un, yn = i,, and eo = . . . = 
CYM = 0, p1 = . . . = , d ~  = I. rhis component can be obtained by 
the measuring scheme shown on Figure 1, with: 

2 271. 
h,,,, = - sin-k(n1 - n2) 

N 2  k=l N 

Fryze's reactive power definition (6) cannot be derived di- 
rectly from equation (30), but all of the three terms (CEO V:, 
CEO I;, V O ~ O  + CEl iVkIkcos(cpk - $k)) that appear in the def- 
iiiition can be derived directly. Term CEO V? can be derived 
from equation (30) by assigning x, = U,, y, = U,, and a0 = 
: .  . = (YM = 1, . . . = / 3 ~  = 0. Term CEO $ can be derived 
from equation (30) by assigning z, = in, y, = z,, and a0 = . . . = 
(YM =1, . . . = p  M = O .  TermVoIo++C~i~VklkcoS(yk-$k)  
can be derived from equation (30) by assigning x, = U,, y, = i,, 
and a. = . . . = CLM = 1, ,d1 = . . . = / 3 ~  = 0. 

This power component can be obtained by the measuring 
scheme shown in Figure 2,  with: 

hLl,, = $(% - .2) 

h;,ln> = Lfi(l'* - 122) (37) 
h3,,,, = g q n 1 -  .z) Y 

Kusters's inductive reactive power definition (6) cannot be 
derived directly from equation (30), but all of the three terms 
(CEO V?, CEl kV>, CEl i Y s i n ( p k  - $k)) that appear in 
the definition can be derived directly. Term CE"=,v," can be 
derived from equation (30) by assigning 5 ,  = U,, y, = U,, and 
cyo = . . . = O M  = 1, PI = . , . = /3M = 0. Term CEl iV? can 
be derived from equation (30) by assigning 2, = v,, yn = U,, 

and oik = t for k = 1,. . . ,hf, cyo = p1 = . . . = pi\.r = 0. Term 
i$&Ihsin(yk - $ k )  can be derived from equation (30) by 

assigning x, = U,, y, = i,, and cy0 = . . . =  cy^ = 0, P k  = 5 for 

This power component can be obtained by the measuring 
k =  1, ...,Df. 

scheme shown in Figure 3, with: 
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Kusters's capacitive reactive power definition (6) cannot be 
derived directly from equation (30).  but ah of the three terms 

\ , I  (CEO V l ,  kV2, Zki $kVklksin(cpk - G k ) )  that appear in 
the definition can be derived directly. Term CEoVv,' can be 
derived from equation (30) by assigning 2, = on, yn = U,, and 

be derived from equation (30) by assigning 2, = v,, Yn = U,, 

and f f k  = k for k = 1,. . .  ,MI cy0 = = .. .  = PM = 0. Term zgl ikVklkszn($Qk - $k) can be derived from equation (30) by 
assigning x, = un, yn = in, and (YO = .. .  = (YM = 0, P k  = k for 
k = 1 ,  . . . ,  M .  

This power component can be obtained by the measuring 
scheme shown in Figure 3,  with: 

(YO = ...  = C ~ M  = 1, /31 = . . .  = PM = 0. Term CEO kV2 can 

hX,,, = tS(n1-.2) 

h:ln* = p CEI ks2n&l - n2) 
hEln2 = Cfl",, kcosZk(n1 - 122) (39) 

The above derived algorithms provide measurements of power 
components by all the definitions presented in the second sec- 
tion of this paper. The adopted mathematical formulation (2D 
digital FIR filters) has been proved quite convenient for deriv- 
ing new algorithms as well as for analysing the existing ones. 
However, once a. new algorithm is derived, it is possible to im- 
plement the required calculations using either 1D or 2D digital 
filters. Further study of implementation possibilities indicates 
that an efficient recursive calculation procedure can be utilized 
(.\PPESDIX C).  

Fig. 1. Measuring Scheme for the Directly Derived Powers 

.................................................................. 

EXPERIMENTAL EVALUATION 

A FORTRAN computer program has been developed in or- 
der to test the proposed algorithms by simulation. The simula- 
tion is to verify the design theory, and to perform some of the 
tests that are required for implementation of the power meters 
based on digital algorithms. These tests examine the effect of the 
system frequency change on the accuracy of the algorithms. The 
algorithms have been tested on two field recorded non-sinusoidal 
voltage and current pairs. 

Test Conditions 

The algorithms have been tested on two field recorded non- 
siiiusoidal voltage and current pairs given in [25]. All of the test 
signals are described in the frequency domain for the reasons ., 
given below. 

Power components, as presented in the Suggested Definitions 
section, are defined in terms of magnitudes and phase angles of 
voltage' and current harmonics. Thus a power component for a 
given voltage and current pair can be computed by its definition 
i f  the magnitudes and phase angles of these signals are known. 
For instance, active power of the first harmonic can be computed 
by  its definition as: 

Voltage and current signal samples can be computed based 
on the magnitudes and phase angles of their harmonics by using 
equation (2). 

An algorithm for digital power measurement is merely a set 
of computations performed on voltage and current signal sam- 
ples in order to obtain the power. Thus a power component for 
a given voltage and current pair can be computed by the cor- 
responding algorithm if the samples of these signals are known. 
For instance, active power of the first harmonic can be computed 
by an algorithm as: 

-.+ Q:, 

The power components obtained by the definitions are taken 
as reference values in tests, and compared with those obtained 
by applying corresponding algorithms on voltage and current 
signal samples. 

Frequency domain description of the input signals also facili- 
tates simulation of the system frequency change. This is further 
discussed below. 

Tests Description 

Fig. 2. Measuring Scheme for Fryze's Reactive Power 

.................................................................. 

: ................................................................ : 

Fig. 3. Measuring Scheme for Kusters's Reactive Powers 

To verify the design theory means to  computationally check 
formulae and schemes theoretically derived in the previous chap- 
ter. The power component obtained by the definitions are taken 
as reference values and compared with those obtained by ap- 
plying corresponding algorithms on voltage and current signal 
samples. 

The technique for algorithm design, presented in the previous 
section, is developed based on the assumption that voltage and 
current signal samples are of the form: 

When the system frequency changes, voltage and current 
signal samples cannot be represented the same way because the 
ratio between the system frequency and the sampling frequency 
is not an integer number any more. Strictly speaking, voltage 
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Fig. 4. Voltage and Current Signal Pair Wi 

and current signal samples in the new conditions are not N -  
periodic and DFT does not apply. This is a general problem 
of digital algorithms for power measurements, and there is a 
methodology proposed for treating the problem in sinusoidal 
systems [22]. 

The tests performed here have been undertaken to  indicate 
the sensitivity of the derived algorithms to small (*O.l% and 
&0.5%) but the most common changes of the system frequency. 
System frequency change is simulated while computing the volt- 
age and current signal samples as follows: 

where coefficient c f  represent the ratio between the actual sys- 
tem frequency and the nominal system frequency. 

Fig. 5 .  Voltage and Current Signal Pair W, 

In non-sinusoidal systems, the derived algorithms are to mea- 
sure power accurately for any voltage and current pair without 
being affected by their harmonic content. As mentioned earlier, 
the algorithms have been tested on the set of two recorded signal 
pairs given i n  [ 2 5 ] .  These signals have various harmonic con- 
tents, shown together with corresponding waveforms in the Fig- 
ures 4 and 5 .  Since the signals are frequency limited to M = 50, 
the sainpliiig rate is chosen to be N = 2M + 1 = 101. Testing 
the algorithms on two recorded signal pairs with random val- 
ues of harmonics was to examine their accuracy in conditions of 
different harmonic contents. 

Test Results 

A .  Base Test 

The relative errors for active power computed by the algorithm 
for measuring the active power of the first harmonic, and by the 
algorithm for measuring the average power are given in Table I. 

Table I. Base Test for Active Power 

The relative errors for reactive power computed by the al- 
gorithm for measuring the reactive power of the first harmonic, 
Budeanu reactive power, Fryze's reactive power, Kusters's in- 
ductive reactive power, and Kusters's capacitive reactive power 
are given in Table 11. 

Table 11. Base Test for Reactive Power 

Accuracy of the algorithms in ideal conditions is good; the 
highest relative error was 3.47.10-' for the algorithm for Kusters's 
capacitive reactive power measurement. The non-zero errors are 
due to finite precision of computer number representation. No 
relation between the errors and harmonic content of the signals 
have been noticed. 

B. Frequency Variation Test 

The relative errors for active power computed by the algorithm 
for measuring the active power of the first harmonic, and by the 
algorithm for measuring the average power for frequency change 
of i O . l %  and 3=0.5% are given in Table 111. 

Table 111. Frequency Change Test For Active Power 

, 
I Freauencv variation + O . l %  I 
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. 

The relative errors for reactive power computed by the al- 
gorithm for measuring the reactive power of the first harmonic, 
Budeanu reactive power, Fryze’s reactive power, Kusters’s reac- 
tive inductive reactive power, and Kusters’s capacitive reactive 
power for frequency change of kO.l% and f0.5% are given in 
Ta.ble IV. 

WAV &I QBud QFr QiK QcK 
M/1 2.SOE-05 2.24E:-05 2.OOE-05 5.95E-05 7.56E-06 
W, 5.413-04 4.803-04 3.753-04 2.853-04 2.653-03 

Table IV. Frequency Change Test For Rective Power 

L 

Ql QBud Q Fr QiK QCK 
!Jl 2.11E:-04 1.6OE;-04 1.11E:-04 1.61E-05 1.13E;-03 

Frequency variation +0.5% 
M f z  2.523-03 2.33E-03 1.60E-03 2.343-03 2.643-03 

WAV 1 Q1 1 Q Bud I Q Fr QiI< QcK 
14’1 I 3.49E-04 I 4.OYE;-04 I 8.57E;-05 I 7.25E;-05 I 8 .68-04 

I 

Freauencv variation +0.1% I 

11 Wi 1 2.773-03 I 2.423-03 12.213-03 I 2.793-03 1 1.05E-03 11 
.4ccuracy of the algorithms in conditions of system frequency 

change is in all of the cases worse than the error of the corre- 
sponding algorithms for sinusoidal case. The highest relative er- 
ror was 0.00277% for test pair W,, algorithm for average power 
measurement, and frequency variation of +0.5%. The non-zero 
errors are due to finite precision of computer number represen- 
tation and the system frequency change. The highest error oc- 
curred for the algorithm for average power measurement because 
it treats all of the harmonics evenly and the frequency change 
becomes more significant for higher harmonics. For a partic- 
ular value of frequency variation the higher error occurred for 
the second test pair for each of the algorithms. This is because 
current signal 2 is highly distorted; the fifth harmonic is 65% 
of the fundamental, and the seventh harmonic is 40% of the 
fundamental. 

Briefly, the above tests have shown that accuracy of the al- 
gorithms in ideal conditions is satisfactory, and independent of 
the harmonic content of the voltage and current signals. In pres- 
ence of the system frequency change, accuracy of the algorithms 
decreases with the signal distortion. 

CONCLUSIONS 

Power components are to be measured under sinusoidal and 
non-sinusoidal circumstances. Currently available analog meters 
are uiisuitable for non-sinusoidal systems whereas digital power 
meters are designed to measure either active and reactive power 
in sinusoidal systems or active power only in non-sinusoidal sys- 
tems. 

This paper has derived and tested algorithms for digital mea- 
surements of power components according to the suggested def- 
initions in sinusoidal and non-sinusoidal linear systems. The 
most important contribution of this study is the proposed algo- 
rithm design technique. The technique is general, based on two 
dimensional digital signal processing. 

Applying this technique in deriving the algorithms for mea- 
suring first harmonic active and reactive power, as well as for 
measuring average power, led to derivation of the known algo- 
rithms introduced earlier by Malik and Hope, and Turgel. Sev- 
eral new algorithms for measurement of the quantities for which 
there are no proposed digital algorithms, have been derived by 
using the new technique. These applications have demonstrated 
that derivation of algorithms for digital measurements of power 
components is straight-forward when the proposed technique is 
used. 

The technique is not lirnikd to t.he extent, of designing the 
algorithms for present needs only, but it may be used in design- 

ing the algorithms for some new applications as well. All of the 
derived algorithms can be implemented as 2D digital FIR filters 
connected in special schemes. This implementation is suitable 
for the use of custom designed chips. There are several compu- 
tational advantages of this implementation approach which are 
now being investigated, and will be reported in the future. 
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APPENDIX A 

The DFT of a N-periodic digital sequence z, is defined by: 

(44) 
n=O 

Since z, is given by (21) the above equation becomes: 

(45) 

APPENDIX B 

For ao = . . .  = a~ = 1, 
becomes: 

= . . .  = DM = 0. equation (32) 

APPENDIX C 

Expression (19) can be rewritten as: 

Pn = C L ’  hkmvn-kin-,+ 
(47) hkOun-kin + ho,v,i,-, - hoov,i, 

Equation (32) implies h k + ~ ~  = hkm+N = hk,, and hk+lm+l = 
hkm. Therefore: 

P,-i = Er=-;’ N-1 E:=: hkmVn-kin-m-k 

Ck=o hkOVn-kin-N + E::: homvn-win-m 
+hOOu,-Nin-N - hOOVn-Nin - hOOVnin-N 

(48) 

Then from (47) a.nd (48) follows: 

Pn - Pn-1 = ( 2 %  - i n - N )  E:=-: hkOv,-k+ 

(un - v n - ~ )  E:;: h0min-m- 
hOO(vn - Vn-N)(in. - i n - N )  

(49) 

Thus the innovation of P, needs only four 1D linear filter- 
ing operations, three multiplications for active power, and two 
multiplica.tions for reactive power (hoo = 0). This is comparable 
wit11 otlier existing niethods. 
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