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Abstract— This paper describes simple and efficient machine 

learning (ML) methods for efficiently detecting multiple types of 

power system events captured by PMUs scarcely placed in a large 

power grid. It uses a single feature from each PMU based on a 

rectangle area enclosing the event in a given data window. This 

single feature is sufficient to enable commonly used ML models 

to detect different types of events quickly and accurately. The 

feature is used by five ML models on four different data-window 

sizes. The results indicated a tradeoff between the execution speed 

and detection accuracy in variety of data-window size choices. 

The proposed method is insensitive to most data quality issues 

typical for data from field PMUs, and thus it does not require 

major data cleansing efforts prior to feature extraction.  

Index Terms-- Big data, Event detection, Machine learning, 

Phasor measurement units, Power system faults, Time series 

analysis. 

I. INTRODUCTION 

Synchrophasor measurements from Phasor Measurement 
Units (PMUs) are widely used for off-line post-event analysis 
and improved real-time situational awareness in power system 
operations. Detecting various types of events quickly and 
accurately is an important first step. Application of machine 
learning (ML) techniques to detect events has been extensively 
investigated in the last few years [1].  

Multiple feature extraction methods including Discrete 
Fourier Transform, Discrete Wavelet Transform, Principal 
Component Analysis (PCA), Fast variant of Discrete S-
Transform (FDST), and domain specific shapelets; using ML 
algorithms such as k-nearest neighbor (KNN) and Support 
Vector Machine (SVM) were compared [2,3].  The normalized 
value of the wavelet coefficient energy is used as the feature to 
detect events in [4]. Dynamic Programming based Swinging 
Door Trending was used [5]. Performance of SVM, KNN, and 
Decision Tree for event detection based on Micro-PMU data 
was compared for an application in distribution networks [6]. A 
Pseudo Continuous Quadrature Wavelet Transform was used to 
generate features for Convolutional Neural Network (CNN) [7]. 
A specialized method for detection and classification of 

multiple events was developed based on Signal Energy 
Transform [8]. The use of Minimum Volume Enclosing 
Ellipsoid (MVEE) to extract a set of features from recorded 
PMU signals is reported in [9]. PCA is applied to reduce the 
dimensionality of the PMU dataset [10,11]. The parallel version 
of the Detrended Fluctuation Analysis was developed for fast 
event detection [12]. The FDST is used to extract features in a 
form of Time Frequency Representation [13]. Hierarchical 
CNN approach to event detection was recently developed [14]. 
Transfer learning was used to reduce the required number of 
labels [15]. SVM and ensemble classifier based on Bagged 
Trees were also used for classification with the consideration of 
cyberattacks causing false event detection [16]. Deep Neural 
Network (DNN) enforced with information loading was used 
for event detection and classification in a large PMU dataset 
from the Eastern Interconnect of the U.S.A. [17]. 

Previous studies have limitations when historical dataset 
containing thousands of imprecise raw event labels are 
analyzed. Additional challenges involve measurements with 
missing or duplicated data, out-of-range data, etc., which 
violate some of common ML assumptions related to 
distribution stationarity, smooth mapping of explanatory 
variables to response, large signal to noise ratio, negligible 
effects of ignored information and sufficient precision of labels.   

Our contribution is a novel method to transform raw PMU 
signal to a small number of informative features that can be 
used for ML based event detection. Our feature, based on a 
rectangle area (RA) capturing the voltage magnitude and 
frequency measurements within a data window, offers several 
advantages: 1) quick extraction of events from a large historical 
dataset by using only one RA feature per PMU for a given time 
window; 2) ML results without the need for additional data 
preprocessing, subsampling, or cleansing prior to feature 
extraction; and 3) highly accurate event detection when used 
with different ML models. 

Data preparation is discussed in Section II,  methodology in 
Section III, and results in Section IV, followed by conclusions 
and references.  

This material is based upon work supported by the Department of 

Energy under Award Number DE-OE0000913. 



 

 

II. DATA PREPARATION 

A. Field PMU data 

The data used for this research contains measurements from 
38 field PMUs recorded over two years (2016-2017) provided 
in an Apache Parquet storage format (~6 TB). The data is 
captured from the Western Interconnection (WI) in the USA 
that has thousands of buses. The dataset is anonymized by the 
provider for security reasons by eliminating designation of 
physical location of PMUs and the grid topological information 
making it extremely difficult to detect events using various 
causality correlations. 24 out of 38 PMUs reported data at 60 
frames per second (fps), whereas the remaining 14 PMUs at 30 
fps. Each PMU measured one positive sequence voltage and  
current, but some also included three phase phasors, as well as 
frequency and rate of change of frequency (ROCOF). For this 
study we use measurements of frequency and positive sequence 
voltage. The PMUs are connected to several voltage levels in 
the transmission network. Apache Spark and Python script are 
used to access and analyze the dataset stored on a high-
performance server cluster. An event log for the dataset is also 
provided with 1-minute resolution labels (Raw Labels).  

Another main challenge when dealing with field PMU 
measurements is data quality issues [18,19]. The PMU dataset 
we use for this study contains multiple such issues: 

• Missing data: individual PMU datasets have between 0.7% 

and 30% of missing positive sequence magnitude and 

frequency measurements, respectively. Overall, 3% of 

measurements are missing. 

• Data duplicates [19]: 14 out of 38 PMUs contain data 

duplicates whose number varies from day to day and 

reaches 2.6 x 106 frames on some days.  

• Out-of-range data: This includes all the “impossible 

values” that would never be seen in a real power system.  

Frequency measurements from 5 out of 38 PMUs have out-

of-range values, ranging from having only 1 wrong point 

for one PMU, to 4% of the measurement points for another. 

No out-of-range date points were detected in the voltage 

magnitude measurements. To detect these out-of-range 

data points, the following criteria is used: Voltage 

magnitude > (rated voltage)*2 or voltage magnitude < 0; 

and Frequency > 70 Hz or < 50 Hz. 

B. Event types of interest 

Our method is aimed at detecting events from sparsely 
located PMUs using imprecise event log labeled at 1-minute 
resolution described by the data provider as: a) forced line 
outage (such as short-circuit faults causing line outages), b) 
fundamental frequency deviations, and c) forced transformer 
outages. The goal is to use the discriminative features of these 
events to separate them from normal operations. An example of 
positive sequence voltage magnitude and frequency 
measurements during a fault related forced line outage event is 
shown in Fig. 1 where the voltage magnitude dip is the main 
event characterization. Some local (only on selected PMUs) 
fluctuations of frequency are also observed. In Fig. 2, 
measurements during fundamental frequency event are 
presented. One can observe large frequency drop and a small 
voltage magnitude dip on all PMUs. Fig. 3 indicates voltage and 

frequency measurements for a combination of forced 
transformer and line outages where the voltage magnitude dip 
and frequency fluctuations are the main characterizations. In all 
three types of events, significant deviations from the normal 
operation signal are observed for most of the events, but not 
always. For some events, the observed deviations in PMU 
measurements are much smaller, probably due to the large 
distance between the event location and locations of available 
PMUs, which makes it very difficult to separate them from 
normal events. This makes it impossible to build a threshold-
based event detection using only the RA feature without the 
ML. Howevere, if we use the RA feature as an input to the ML 
model, very good performances can be achieved as 
demonstrated in the Results section. Due to the size of the full 
dataset (~6 TB) on which the method is applied to extract the 
events, the ML process is made much faster by extracting only 
one RA feature per PMU that captures the product of voltage 
magnitude difference and frequency difference within a data 
window. In general, our method can detect any event that 
contains a significant change in voltage magnitude and/or 
frequency on at least one of the PMUs. The method was not 
aimed at detecting oscillation or other events that do not exhibit 
such properties.  

C. Event Labels 

The event log includes a total of 1,472 forced events within 
Line, Frequency, and Transformer categories. The imprecise 
start time with 1-minute resolution makes it very difficult to 
correctly chose the data-window position and size to capture the 
event of interest for feature extraction. To facilitate more 
accurate learning with a higher quality training data, we 
performed a visual inspection of most of the PMU 
measurements indicated by the event log to find the precise start 
time of each event. Out of 1,472 events, we were able to 

 
Fig. 1 Frequency (left) and voltage magnitude (right) of a 

line outage event 
 

 
Fig. 2 Frequency (left) and voltage magnitude (right) of a 

frequency event 
 

 
Fig. 3 Frequency (left) and voltage magnitude (right) during 

a combination of transformer event and line event 

 



 

 

visually confirm and labeled more precisely 1,038 events with 
Cleaned Labels. In Fig. 4, we plot a histogram with the number 
of events in each time span according to the temporal distance 
between the event start time reported in the event log and the 
event start time determined using visual inspection of the PMU 
data. As it may be observed in Fig. 4, most of the events 
occurred within the (-6sec, +54 sec) window from the start time 
reported in the event log. There were 52 (~4%) events occurring 
outside of this time window. We separate the labels into two 
categories: Raw Labels created based on the start time from the 
original 1,472 events taken from the event log, and Cleaned 
Labels created based on the resulting 1,038 events of the visual 
inspection of the PMU data. Furthermore, we investigate 
different time window durations. We are unable to use data-
windows shorter than 1-min using Raw Labels due to the 
uncertainty in the distance between the event log start time and 
actual event start time as demonstrated in Fig. 4. Because of the 
overlapping event windows start times (multiple events having 
a start time within one minute), we are unable to create Cleaned 
Labels for windows longer than 1-min.  

For training of the ML models for event detection, we also 
need examples of normal operation that do not contain any 
types of events. We have observed that the event log does not 
contain all the events “seen” by the PMUs. Thus, we cannot 
assume that all the time periods between the events in the event 
log represent normal operation despite the fact that a large 
percentage does. In our study, the normal operation examples 
are taken from time periods between the events of the event log 
in two ways:  

1) Not visually inspected: We first exclude the time 
segments of events based on the event start times and end times 
in the event log. Then we select all the time segments that are 
longer than 27 minutes from the remaining time segments. 
From each of the selected time segments we take two 3-min 
data-windows exactly from the middle point as the normal 
operation examples. We do this to ensure that the normal 
operation examples are at least 10 min away from any event 
time segment. These examples are not visually inspected to 
confirm if they truly represent normal operation. This set of 
normal operation examples is used for training with Raw Labels 
(1-min and 3-min).    

2) Confirmed by visual inspection: We select 923 1-min 
data-windows from the original PMU dataset as normal 
operation example based on visual inspection. These normal 
operation examples are used for training with the Cleaned 
Labels of all durations. For the cases of time windows of 30-sec 
and shorter, two separate time windows are extracted from the 
1-min examples. The number of labels in each event log in each 
category and time window selection criteria are presented in 
Table I. 

Having two sets of labels enables us to compare the 
performances of the event detection by various ML models 
trained with: 1) raw event and normal operation labels that may 
be created without any visual inspection, and 2) cleaned event 
and normal operation labels that are created after visual 
inspection. Results for the event detection on Raw Labels show 
performance of the method when it is automatically applied to 
the dataset with Raw Labels. Results for the event detection on 
Cleaned Labels illustrate how the method would perform if the 
original dataset had much cleaner event labels.  

III. METHODOLOGY 

Our methodology is selected to deal with specific 
challenges of the provided dataset, in particular: 

• Due to a large amount of historical PMU data, it makes it 

time consuming to apply extensive data cleansing and 

feature engineering. Defining computationally simple 

feature that does not require extensive data cleansing is 

highly desirable. 

• For supervised ML training, labels need to be much more 

precise and accurate, particularly regarding the start and 

end time of an event. The visual inspection is needed to 

understand what differentiates events from normal 

operation, and confirm exactly when the events actually 

occurred. We partition the files into smaller time windows 

to position an event inside the window to capture their 

respective lengths more precisely to see the impact. 

• Events are occurring relatively rarely while the normal 

operation conditions vary with time constantly, making it 

hard to differentiate an event from normal operation 

particularly when all PMUs are far away from an event’s 

location. We use a set of visually confirmed normal 

operation examples from different time periods to better 

distinguish events with various normal operation states. 

To improve the confidence in normal operation selection 

 
Fig. 4 Histogram of the temporal distance between the event 

start times of corresponding Raw Labels and Cleaned Labels 

Table I. Number of labels per category and window selection method 

Event Log  
# Event 

Labels 

Event Start 

Time 

Event End 

Time 

# Normal 

Labels 
Normal Selection Method 

3-min Raw Labels 1472 STEL – 1 min STEL + 2 min 2548 Randomly selected 

1-min Raw Labels 1472 STEL – 6 sec STEL + 54 sec 2548 Randomly selected 

1-min Cleaned Labels 1033 STVI – 5 sec STVI + 55 sec 923 Based on the visual inspection 

30-sec Cleaned Labels 1038 STVI – 2 sec STVI + 28 sec 1846 Based on the visual inspection 

5-sec Cleaned Labels 1038 STVI STVI + 5 sec 1846 Based on the visual inspection 

STEL - start time of the event based on the event log STVI - start time of the event based on the visual inspection 

 



 

 

by the domain expert these examples are taken from the 

measurements that are completely outside the reported 

events in the event log. 

As a result of better understanding the correlation between 
normal states and events, and between labeled time and event 
occurrence, we come up with the RA feature as the best 
approach to selecting the time windows corresponding to the 
most prominent signal behavior for different types of events. 
We then use the RA features across different data windows 
from various PMUs to train variety of conventional state-of-
the-art ML models. The outcome, besides contributing to a ML 
model to detect events, also offers an understanding why proper 
time-stamping of events matters, and how to deal with the 
situations with labels characterized by imprecise time-stamps. 
We do not perform any other cleansing of the raw dataset prior 
to feature extraction, which saves significant time. 

 A. Feature Extraction  

The underlying premise of this paper is that all considered 
types of events have one thing in common: a deviation from the 
normal operation visible on measurements of frequency, 
voltage magnitude, or both. In the case of normal operation, the 
difference between fmin and fmax (Vmin and Vmax) within a short 
time window (~1-min) is small. In case of any of the mentioned 
event types, this difference becomes larger in the same time 
window. Based on this experience, we combine the difference 
between fmin and fmax and Vmin and Vmax, by enclosing the signal 
into a rectangle area RA defined as: 

�� � ����� 	 ��
�� ∗ ����� 	 ��
�� (1) 

where fmax and fmin are maximum and minimum measured 
frequency, and Vmax and Vmin are maximum and minimum 
measured positive sequence voltage magnitude, inside the 
selected time window, for example 1-min window in Fig. 5.  

B. Machine Learning Models  

The features for a single time window are combined into a 
feature matrix X where each row contains 38 RA features, one 
corresponding to each observed PMU. The number of instances 
is equal to number of time windows in the event log (for 
example, in the case of 1-min Raw Labels, the number of 
instances is equal to 1472 (events) + 2548 (normal) = 4020. The 
labels vector “y” is created for each time window as (‘1’ – in 
case of a reported event, and ‘0’ – in case of normal operation) 
and combined into a vector.  

The feature matrix X and labels vector “y” are then ingested 
as inputs to a variety of ML algorithms aimed to learn a 38-
dimensional function that maps the given time window to one 
of 2 categories (normal operation or event of interest); � ∈
�0,  1�. We use the scikit-learn library for ML in Python [20]. 

Four ML algorithms from scikit-learn library are tested: 
Random Forest (RF), K-Nearest Neighbor (KNN), AdaBoost 
(AB), Gaussian Naive Bayes (GNB). In addition, we also use 
the Catboost (CB) model from the library available in [21].  

C. Response to Data Quality Problems  

As mentioned in Sec. III.A. there are several data quality 
issues with the dataset. Here we provide a discussion on how 
our method responds to these data quality issues.  

Missing data has minor impacts on the data model 
performance. We only need 2 data points within a single time 
window to extract our feature. For example, for a 1-min 
window on a 30 fps we only need 2 out of 1,800 points. In case 
there are no two points in the time window for a given PMU, 
the RA is zero. The main principle of this method is that smaller 
RA corresponds to normal operation, and larger RA corresponds 
to events. In a case PMU reports zero as an RA value, this PMU 
is simply not participating in the claim that there is an event, 
and a decision is made based on the remaining PMUs. A similar 
approach is taken if there are at least two points available within 
the time window, but they do not capture the event due to large 
number of missing points. In that case the RA for that particular 
PMU will not be zero, but it will be smaller than values captured 
by PMUs without missing data. This results in that PMU not 
participating in the claim that there is an event. Since we have 
38 PMUs, and the majority of them are available for all the 
observed time windows, the impacts of missing data are 
negligible. The benefit of our method is that it does not require 
any missing data characterization or replacement, which makes 
it easier to implement and much faster to execute. 

Data duplicates do not affect the data model performance 
in any way since we extract a single min and max value from 
each data window. This way duplicated values are 
automatically discarded during the feature extraction. 

Out-of-range data do affect the data model performance 
since they can cause a high value of RA that can be easily 
mistaken for an event. There are two ways to remove such data:  
a) from the raw dataset prior to feature extraction, or b) from 
the pre-processed data after the RA feature extraction. The first 
method would be more accurate, but it is costlier 
computationally due to the large volume of the raw dataset. We 
decided to use the second method. The result is that only 
negligibly small fraction consisting of 11 values of RA needed 
to be discarded and replaced with zeros. The threshold for 
removal is RAT = 20 MVHz = 1000 kV * 20 Hz, based on the 
maximum range of voltage of 1000kV (2 x 500kV, where 
500kV is max rated voltage) multiplied by maximum range of 
frequency of 20 Hz (50 Hz < f < 70 Hz).   

IV. RESULTS  

Hyperparameters tuning was performed using a grid search 
to select the hyperparameters that yield the best performances. 
The hyperparameters that were set for the five classifiers are 
listed in Table II. 

 
Fig. 5. Extraction of Rectangle Area feature 



 

 

Table III lists the results for the five classifiers using cross-
validation for all five event log types. The split of the data into 
training and test sets is performed with Stratified K-Folds cross-
validation with 5 folds. To ensure that each fold has the same 
proportion of observations with a given class outcome value, 
the same number of time windows from each event type were 
chosen. Five performance measures were reported: Area Under 
the Receiver Operating Curve (AUC), Area Under the Precision 
Recall Curve (AUPRC), Precision, Recall, and F-1 score [22].  

As observed, from the Table III, the Random Forest 
outperforms all the other algorithms in most cases. Catboost is 
a close second place. Gaussian Naive Bayes provides the best 
precision in most cases. All the models have higher precision 
than recall. The study of the fundamental algorithmic reasons 
for such performance is out of the scope of this paper.  

A. Impact of the Quality of Labels  

We can observe from Table III that the accuracy obtained 
by using Cleaned Labels is significantly better than the 
accuracy obtained using the Raw Labels in the event log. For 
example, on the same window size equal to 1-min, the use of 
Raw Labels results in 0.92 AUC while the use of Cleaned 
Labels results in 0.98 AUC. 

We perform a more detailed comparison between two cases: 
1-min Raw Labels, and 1-min Cleaned Labels to check how the 
quality of labels affects the performance. We ran another set of 
experiments using an 80/20 split of the dataset, where 80% of 
the instances are used for training and 20% are used for testing. 
This experiment is used to generate confusion matrices [22] 
(Fig. 6) and ROC curves (Fig. 7) for 1-min Raw Labels and 1-
min Cleaned Labels. Confusion matrices are included only for 
RF that is the best performing model overall as presented in 
Table III.  

We can observe from Fig. 7 that there is a more significant 
drop in Recall as compared to Precision in the case of Raw 
Labels. As observed from Fig. 6, the model is more likely to 
misclassify normal operation as an event (false positives), than 
the other way around (false negatives). This is a desirable 
outcome for the detection where it is important to detect as 
many events as possible and picking up some mislabeled 
normal operation is a smaller issue because this can be 
eliminated during classification. The classification into 
different types of events is outside of scope of this paper and is 
left for future work. 

B. Impact of Time Window Selection 

Next, we analyze how the accuracy is affected by the 
change in the time window size. When we compare two cases 

Table II. Selected Hyperparameters for the Binary Classifiers 

AB(n_estimators=200, learning_rate=0.3) 

RF(max_depth=200, n_estimators=150, 

random_state=42) 

GNB(var_smoothing=1e-12) 

KNN(n_neighbors=10, weights='distance', 

leaf_size=100) 

CB(verbose=False, learning_rate=0.01, 

depth=8) 
 

Table III. Model performance on five event log types 

Event Log 

Type 
Model AUC AUPRC 

Preci-

sion 
Recall 

F1-

score 

3-min Raw 

Labels 

RF 0.93 0.92 0.90 0.81 0.85 

CB 0.92 0.91 0.91 0.77 0.83 

KNN 0.91 0.90 0.88 0.79 0.83 

AB 0.89 0.88 0.90 0.72 0.80 

GNB 0.87 0.85 0.94 0.54 0.69 

1-min Raw 

Labels 

RF 0.92 0.92 0.95 0.81 0.87 

CB 0.91 0.91 0.95 0.76 0.85 

KNN 0.90 0.91 0.93 0.78 0.85 

AB 0.89 0.89 0.95 0.71 0.81 

GNB 0.87 0.86 0.96 0.60 0.74 

1-min 

Cleaned 

Labels 

RF 0.98 0.99 0.97 0.92 0.94 

CB 0.98 0.99 0.98 0.91 0.94 

KNN 0.97 0.98 0.97 0.87 0.92 

AB 0.95 0.97 0.97 0.88 0.92 

GNB 0.95 0.96 0.98 0.80 0.88 

30-sec 

Cleaned 

Labels 

RF 0.99 0.99 0.98 0.93 0.95 

CB 0.98 0.98 0.98 0.91 0.94 

KNN 0.97 0.97 0.98 0.85 0.91 

AB 0.96 0.96 0.98 0.87 0.92 

GNB 0.96 0.95 0.97 0.81 0.88 

5-sec 

Cleaned 

Labels 

RF 0.99 0.99 0.98 0.95 0.96 

CB 0.99 0.99 0.99 0.94 0.96 

AB 0.98 0.98 0.98 0.92 0.95 

KNN 0.98 0.98 0.98 0.89 0.94 

GNB 0.98 0.97 0.98 0.89 0.93 

RF: Random Forest, CB: Catboost, KNN: K-Nearest 

Neighbor, AB: AdaBoost, GNB: Gaussian Naive Bayes 

 

   
Fig. 6 Confusion matrix for Random Forest for 1-min Raw 

Labels (left) and 1-min Cleaned Labels (right) 

 
Fig. 7 Precision Recall Curve for 1-min Raw Labels (left) 

and 1-min Cleaned Labels (right) 



 

 

with Raw Labels taken from the provided event log, we can 
conclude that the 3-min window results in better accuracy as 
compared to the 1-min window. This can be explained by the 
number of recorded events that are inside the 3 min window 
around the event log start time, but still outside of 1-min 
window. As demonstrated in Fig. 4 in Sec. III B there were at 
least 52 events (out of the inspected 1,038) that are outside of a 
1-min time window. In case of these events, the detection model 
using 1-min labels is receiving a “normal operation” signal with 
an “event” label. By cross validation of the results from Table 
III we can observe that the AUPRC is very comparable between 
two cases (1-min and 3-min for Raw Labels). 

Cleaned Labels demonstrate consistency in improving 
accuracy with shorter time windows. The visual inspection is 
performed to make sure that the start of the event is within the 
selected time window. The increase in accuracy from 0.981 in 
case of 1-min labels to 0.992 in case of 5-sec labels can be 
explained by the smaller fluctuation of normal operation within 
a shorter time window. 

CONCLUSION 

We propose a novel waveform feature extraction method 
that makes the ML models more efficient when detecting 
various types of events in large datasets of field-recorded PMU 
measurements. Since extracting events from such large data 
sets is time consuming and prone to errors due to imprecise 
labels, we observe several benefits of our method:  

• A single Rectangle Area feature used as an input to the 

ML algorithms makes the detection of events in a large 

historical PMU dataset computationally very efficient.  

• No data cleansing is required prior to feature extraction 

and only minor cleansing of out-of-range data is required 

after feature extraction to achieve ML performance. 

• The Random Forest ML algorithm combined with the RA 

feature provides the best accuracy (0.924-0.991) 

depending on the window size and quality of labels. 

• A reasonably high accuracy of detecting events with Raw 

Labels (0.931) can be significantly improved by learning 

from the Cleaned Labels (0.991). 

• If the method to create labels is more precise than what the 

SCADA event log provides, the RA feature makes event 

detection using ML faster.  

DISCLAIMER 

This report was prepared as an account of work sponsored 
by an agency of the United States Government. Neither the 
United States Government nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would 
not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily 
constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency 
thereof. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States 
Government or any agency thereof.  
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